K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

a) Ta có:

\(\left(a+b\right)\left(a+c\right)+\left(c+a\right)\left(c+b\right)\)

\(=a^2+ac+ab+bc+c^2+bc+ac+ab\)

\(=a^2+c^2+2ac+2bc+2ab\)

Thay \(a^2+c^2=2b^2\) vào biểu thức ta được:

\(=2b^2+2ac+2bc+2ab\)

\(=2\left(b^2+ac+bc+ab\right)\)

\(=2\left[\left(b^2+bc\right)+\left(ac+ab\right)\right]\)

\(=2\left[b\left(b+c\right)+a\left(c+b\right)\right]\)

\(=2\left(b+a\right)\left(b+c\right)\)

\(\RightarrowĐpcm\)

24 tháng 9 2017

Biến đổi VP ta có :

\(VP=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)

\(=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)

\(=a^5+a.\left(ab\right)^2+b.\left(ab\right)^2+b^5-\left(a+b\right)\)

\(=a^5+a+b+b^5-\left(a+b\right)\) (vì \(ab=1\))

\(=a^5+b^5=VT\)(đpcm)

24 tháng 9 2017

Biến đổi vế phải :
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right) \)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)(vì ab=1)

\(=a^5+b^5\)

13 tháng 9 2017

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

=\(a^3+b^3+\left(a^3-b^3\right)\)

=\(a^3+b^3+a^3-b^3\)

=\(2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)

=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)

=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)

13 tháng 9 2017

a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)

b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)