Chứng minh rằng:
a) \(\left(a+b\right)^5-a^5-b^5=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
b) \(\left(a+b\right)^7-a^7-b^7=7ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\left(a+b\right)\left(a+c\right)+\left(c+a\right)\left(c+b\right)\)
\(=a^2+ac+ab+bc+c^2+bc+ac+ab\)
\(=a^2+c^2+2ac+2bc+2ab\)
Thay \(a^2+c^2=2b^2\) vào biểu thức ta được:
\(=2b^2+2ac+2bc+2ab\)
\(=2\left(b^2+ac+bc+ab\right)\)
\(=2\left[\left(b^2+bc\right)+\left(ac+ab\right)\right]\)
\(=2\left[b\left(b+c\right)+a\left(c+b\right)\right]\)
\(=2\left(b+a\right)\left(b+c\right)\)
\(\RightarrowĐpcm\)
Biến đổi VP ta có :
\(VP=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)
\(=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)
\(=a^5+a.\left(ab\right)^2+b.\left(ab\right)^2+b^5-\left(a+b\right)\)
\(=a^5+a+b+b^5-\left(a+b\right)\) (vì \(ab=1\))
\(=a^5+b^5=VT\)(đpcm)
Biến đổi vế phải :
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right)
\)
\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)
\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)(vì ab=1)
\(=a^5+b^5\)
a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
=\(a^3+b^3+\left(a^3-b^3\right)\)
=\(a^3+b^3+a^3-b^3\)
=\(2a^3\)
b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)
=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)
=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)
a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)
b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)