a, Chứng tỏ 4x + 3y chia hết cho 7 khi 2x + 5y chia hết cho 7.
b, tìm các số tự nhiên có bốn chữ số sao cho khi chia nó cho 130, cho 150 được các số dư lần lược là 88 và 108
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là n thì n + 42 chia hết cho cả 130 và 150 do đó n + 42 : (130;150).
Ta có:130 = 2.5.13;150 = 2.3.52=>(130;150)=2.3.52.13=1950
=> n + 42 :1950
Mà n là số có bốn chữ số nên
n + 42 ∈ {1950;3900;5850;7800;9750}<=>n ∈ {1908;3858;5808;7758;9708}
Chúc học tốt!
Goi số tự nhiên đó là \(n\)thì \(n+42\)chia hết cho cả \(130\)và \(150\)do đó \(n+42⋮\left[130,150\right]\).
Ta có: \(130=2.5.13,150=2.3.5^2\Rightarrow\left[130,150\right]=2.3.5^2.13=1950\)
Suy ra \(n+42⋮1950\).
Mà \(n\)là số có bốn chữ số nên \(n+42\in\left\{1950;3900;5850;7800;9750\right\}\Leftrightarrow n\in\left\{1908;3858;5808;7758;9708\right\}\).
Goi số tự nhiên đó là \(n\)thì \(n+42\)chia hết cho cả \(130\)và \(150\)do đó \(n+42⋮\left[130,150\right]\).
Ta có: \(130=2.5.13,150=2.3.5^2\Rightarrow\left[130,150\right]=2.3.5^2.13=1950\)
Suy ra \(n+42⋮1950\).
Mà \(n\)là số có bốn chữ số nên \(n+42\in\left\{1950;3900;5850;7800;9750\right\}\Leftrightarrow n\in\left\{1908;3858;5808;7758;9708\right\}\).
gọi số đó là a ( a thuộc N , a lớn hơn hoặc = 3) => a-2 chia hết cho 3;4;5;6 hay a-2 thuộc BC (3;4;5;6)
=> BCNN(3;4;5;6) = 2^2.3.5 = 60 nên BC(3;4;5;6) = { 0 ; 60 ; 120;180;...}
=> a thuộc { 2;62;122;182;..}
ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên nên: số đó là 122
Vậy số cần tìm là số 122
tk mk nha
Gọi số phải tìm là a .
Ta có a + 42 chia hết cho 130 và 150
=>a + 42 là BC(130,150)
=> a = 1908; 3858 ;5808; 7758; 9708
a)
CM chiều xuôi.
Có: \(2x+3y⋮17.\) CMR: \(9x+5y⋮17\)
\(\Rightarrow9\left(2x+3y\right)⋮17\)
\(\Rightarrow18x+27y⋮17\)
\(\Rightarrow18x+10y+17y⋮17\)
MÀ \(17y⋮17\)
\(\Rightarrow2\left(9x+5y\right)⋮17\)
\(\Rightarrow9x+5y⋮17\left(đpcm\right)\) do 2 ko chia hết cho 17
CM chiều đảo:
Có: \(9x+5y⋮17\) . CMR: \(2x+3y⋮17\)
=> \(18x+10y⋮17\)
=> \(18x+27y-17y⋮17\)
=> \(18x+27y⋮17\) do \(17y⋮17\)
=> \(2x+3y⋮17\) do 9 ko chia hết cho 17.
VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.
**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ \(x;y\inℤ\) nhé !!!!
a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17
Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17
Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17
Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17.
b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9
a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5
Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)
9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135
2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158
=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158.
Gọi số đó là A
Ta có:
a chia 130 dư 88
a chia 150 sư 108
=>a+42 chia hết cho 130 và 150
Số nhỏ nhất có 8 chữ số chia hết cho 130 và 150 là 10001550
A là: 10001550 -42=10001508
a) ta có:
4x + 3y chia hết cho 7
=> 4 (4x + 3y) chia hết cho 7
=> 16x + 12y chia hết cho 7
=> 14x + 7y + 2x + 5y chia hết cho 7
mà 14x + 7y = 7 ( 2x + y) chia hết cho 7
nên 2x+ 5y chia hết cho 7
b) gọi số phải tìm là a
ta có: a + 42 chia hết cho 130, 150 nên a + 42 là bội chung (130, 150)
vậy a = 1908: 3858; 5808; 7758; 9708
đúng nhé
a+42 ở đâu vậy bạn