Phân tích thành nhân tử
6x^4 - 5x^3 + 8x^2 - 5x + 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
\(x^3+5x^2+8x-4=x^3+x^2+4x^2+4x+4x+4\)
\(=\left(x^3+x^2\right)+\left(4x^2+4x\right)+\left(4x+4\right)\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x^2+4x+4\right)\left(x+1\right)\)
\(=\left(x+2\right)^2\left(x+1\right)\)
\(a,x^4+5x^3-8x-40=x^3\left(x+5\right)-8\left(x+5\right)\\ =\left(x^3-8\right)\left(x+5\right)=\left(x-2\right)\left(x^2+2x+4\right)\left(x+5\right)\\ b,3x^2-6x-12y^2+3=3\left(x^2-2x-4y^2+1\right)\\ =3\left[\left(x-1\right)^2-4y^2\right]=3\left(x-2y-1\right)\left(x+2y-1\right)\)
\(x^3-5x^2+8x-4\)
\(=x^3-4x^2-x^2+4x+4x-4\)
\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
Xong rùi đấy
Ta có: \(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-2\right)^2\left(x-1\right)\)
Vậy \(A=\left(x-1\right)\left(x-2\right)^2\)
Ta có : \(x^3-5x^2+8x-4\)\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4\)\(\Leftrightarrow x^2.\left(x-1\right)-4x.\left(x-1\right)+4.\left(x-1\right)\)\(\Leftrightarrow\left(x-1\right).\left(x^2-4x+4\right)\)\(\Leftrightarrow\left(x-1\right).\left(x-2\right)^2\)
X3-5X2+8X-4
\(\Leftrightarrow\)X3-X2-4X2+4X-4
\(\Leftrightarrow\)X2(X-1)-4X(X-1)+4(X-1)
\(\Leftrightarrow\)(X-1)(X2-4X+4)
\(\Leftrightarrow\)(X-1)(X-2)2
.........................****..........................
1) x3 + 5x2 + 3x - 9
= x3 + 2x2 + 3x2 + 6x - 3x - 9
= ( x3 + 2x2 ) + (3x2 + 6x ) - ( 3x + 9 )
= x2 ( x+ 2 ) + 3x ( x + 2) - 3( x +2 )
= ( x + 2 ) ( x2 + 3x -3 )
2) x3 + 5x2 + 8x + 4
= ( x3 + x2 ) + ( 4x2 + 4x ) + ( 4x + 4 )
= x2 ( x + 1 ) + 4x ( x + 1 ) + 4 ( x + 1 )
= ( x + 1) ( x2 + 4x + 4 )
= (x + 1 ) ( x + 2 )2
3) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= ( x3 - 8x2 ) - ( x2 - 8x ) - ( 2x - 16 )
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
4) x3 - 4x2 + x + 6
= x3 - 3x2 - x2 + 3x - 2x + 6
= ( x3 - 3x2 ) - ( x2 - 3x ) - ( 2x - 6)
= x2 ( x - 3 ) - x ( x- 3 ) - 2 ( x - 3)
= ( x - 3 ) ( x2 - x - 2 )
\(\left(x^2-5x+6\right)\left(x^2-5x+2\right)-5\)
\(\text{Phần tích thành nhân tử :}\)
\(\left(x^2-5x+2\right)\left(x^2-5x+7\right)\)
\(\left(x^2+8x-5\right)\left(x^2+8x+1\right)-16\)
\(\text{Phần tích thành nhân tử :}\)
\(\left(x^2+8x-7\right)\left(x^2+8x+3\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)-3\backslash2.x^2\)
\(\text{Phần tích thành nhân tử :}\)
Lười lắm
(2x2 + x +2)(3x2 -4x + 3)