tìm x,y thuộc Z thỏa mãn
8x2 - 3xy - 5y = 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có y = (8x2 - 25)/(3x + 5) <=> 9y = 24x - 40 -25/(3x + 5)(1)
Để 9y nguyên thì 3x+5 phải là ước nguyên của 25 hay 3x + 5 = +-1;+-5;+-25
Giải ra thế lần lược vào (1) cái nào cho kết quả là bội của 9 thì đó là nghiệm x cần tìm có x => y
nhân cả 2 vế với 9 ta được 72x^2-27xy-45y=225=>72x^2-27xy-120x+120x-45y-200=25
=>3x(24x-9y-40)+5(24x-9y-40)=25
=>(3x+5)(24x-9y-40)=25
=>(3x+5)(24x-9y-40)=ƯCLN(25) giải phương trình 2 ẩn với lần lượt ước của 25=> cặp số x,y nguyên là (-2;-7);(0;-5)
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Answer:
\(3xy-2y=x^2+5\)
\(\Rightarrow y\left(3x-2\right)=x^2+5\) (1)
Mà x và y nguyên \(\Rightarrow x^2+5⋮3x-2\)
\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)
\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)
\(\Rightarrow49⋮3x-2\)
\(\Rightarrow3x-2\in\left\{\pm49;\pm7;\pm1\right\}\)
\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)
\(\Rightarrow x\in\left\{1;3;7\right\}\)
Trường hợp 1: Với \(x=1\) ta thay vào (1)
\(\Rightarrow y=6\)
Trường hợp 2: Với \(x=3\) ta thay vào (1)
\(\Rightarrow y=2\)
Trường hợp 3: Với \(x=7\)ta thay vào (1)
\(\Rightarrow y=6\)
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
\(8x^2-3xy-5y=25\)
8x² - 3xy - 5y = 25
<=> 72x² - 27xy - 45y = 225 ( nhân 9 vào 2 vế)
<=> 72x² - 27xy - 120x + 120x - 45y - 200 = 25
<=> 3x(24x - 9y - 40) + 5(24x - 9y - 40) = 25
<=> (3x + 5)(24x - 9y - 40) = 25
@ TH1 :
{ 3x + 5 = 1
{ 24x - 9y - 40 = 25
=> x = - 4/3; y = - 97/9 ( loại)
@ TH2 :
{ 3x + 5 = - 1 => x = - 2
{ 24x - 9y - 40 = - 25
=> x = - 2 ; y = - 7 ( nhận)
@ TH3 :
{ 3x + 5 = 5
{ 24x - 9y - 40 = 5
=> x = 0; y = - 5 ( nhận)
@ TH4 :
{ 3x + 5 = - 5
{ 24x - 9y - 40 = - 5
=> x = - 10/3; y = - 115/9 ( loại)
@ TH5 :
{ 3x + 5 = 25
{ 24x - 9y - 40 = 1
=> x = 20/3; y = - 39/9 ( loại)
@ TH6 :
{ 3x + 5 = - 25
{ 24x - 9y - 40 = - 1
=> x = - 10; y = - 33 ( nhận)
KL : PT có 3 nghiệm nguyên (x; y) = (- 2;- 7); (0; - 5); ( - 10; - 33)
Nhân 9 hai vế tách tử thành
8[(3x)^2-25)
=25