K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

\(M\le\frac{1}{4}\left[\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ca}{a+b}+\frac{ca}{b+c}\right]\)

\(=\frac{1}{4}\left[\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{a+b}\right]=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

16 tháng 8 2016

 chịu thôi chị ơi!

Ai trả lời câu này được bái luôn thành sư phụ!!!!!

10 tháng 5 2017

đề sao vậy sửa lại đi

10 tháng 5 2017

thang kia bi ngu

20 tháng 5 2019

Ta có \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{a+b}\right)\)

Khi đó \(P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)

\(MaxP=\frac{3}{2}\)khi a=b=c=1/3

NV
26 tháng 1 2019

Ta có:

\(\dfrac{ab}{\sqrt{c+ab}}=\dfrac{ab}{\sqrt{c\left(a+b+c\right)+ab}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt{ab}}{\sqrt{a+c}}.\dfrac{\sqrt{ab}}{\sqrt{b+c}}\)

\(\Rightarrow\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự ta có:

\(\dfrac{bc}{\sqrt{a+bc}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\) ; \(\dfrac{ac}{\sqrt{b+ac}}\le\dfrac{1}{2}\left(\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right)\)

Cộng vế với vế ta được:

\(A\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{bc}{a+b}+\dfrac{ac}{a+b}\right)\)

\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right)\)

\(\Rightarrow A\le\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)

\(\Rightarrow A_{max}=\dfrac{1}{2}\) khi \(a=b=c=\dfrac{1}{3}\)

26 tháng 12 2017

\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)

\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

17 tháng 1 2016

dùng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...