K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

a.\(A=\dfrac{n-4}{n+1}=\dfrac{n+1-5}{n+1}=1-\dfrac{5}{n+1}\)

\(ĐK:n\ne0;n\ne4\)

b.Để A nguyên thì \(\dfrac{5}{n+1}\in Z\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)

*n+1=1 => n=0

*n+1=-1 => n=-2

*n+1=5 => n=4

*n+1=-5 => n=-6

Vậy \(n=\left\{0;-2;4;-6\right\}\) thì A nguyên

17 tháng 4 2022

câu a n nguyên nha bạn

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

8 tháng 9 2016

a) Để A là số hữu tỉ thì \(n-3\ne0\Rightarrow n\ne3\)

b) Để A là số hữu tỉ dương thì n - 3 dương

=> \(n-3>0\Rightarrow n>3\)

c) Để A là số hữu tỉ âm thì n - 3 âm

=> \(n-3< 0\Rightarrow n< 3\)

1 tháng 3 2019

\(1,\)Rút gọn : \(\frac{-24}{56};\frac{1212}{-4545}\)

\(\frac{-24}{56}=\frac{-24:8}{56:8}=\frac{-3}{7}\)

\(\frac{1212}{-4545}=\frac{1212:(-101)}{(-4545):(-101)}=\frac{-12}{45}=\frac{-4}{15}\)

Tự so sánh

9 tháng 7 2017

bn ơi nik ko giải dc đâu . năm nay mik mới lên lớp 6 thui à . thông cảm nha :)

9 tháng 7 2017

ok ko sao đâu mà yên tâm đi hihi....

14 tháng 3 2021

Đề bài có phải như thế này không:

Cho phân số \(A=\frac{n+1}{n-3}\)( với n thuộc Z và n khác 3 ). Tìm n để A là phân số tối giản.

Bài làm

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

A là phân số tối giản \(\Leftrightarrow\frac{4}{n-3}\)là phân số tối giản

\(\Leftrightarrow n-3\)là số lẻ

\(\Leftrightarrow n\)là số chẵn

 \(\Rightarrow n=2k\left(k\in Z\right)\)

14 tháng 3 2021

Mình làm theo đề bạn trên nhé !

\(A=\frac{n+1}{n-3}\) 

Gọi d là (n+1;n-3)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\) 

\(\Rightarrow n+1-\left(n-3\right)⋮d\) 

\(\Rightarrow4⋮d\) 

\(\Rightarrow d=1;d=2;d=4\) 

 ( vì 4 chia hết cho 2 nên ta chỉ làm 1 trường hợp ) TH1 :Nếu d=2 

 \(\Rightarrow n+1⋮2\)

\(\Rightarrow n+1=2k\) 

\(\Rightarrow\) n= 2k-1

khi đó :

n-3 = 2k-1-3=2k-4 \(⋮\) 2

=> phân số đó rút gọn được cho 2 

Vậy để phân số trên  tối giản thì \(n\ne2k-1\)

14 tháng 3 2021

Có \(A=\frac{n+1}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để A là phân số tối giản thì UCLN (4,n-3) = 1

                                      => n -3 là số lẻ

                                      => n lẻ 

                                      => n có dạng 2k+1 (k thuôc Z) và k khác 1 (để n khác 3)

Vậy...

                                     

11 tháng 3 2018

\(\frac{n+3}{2n-2}\) có giá trị nguyên

\(\Leftrightarrow n+3⋮2n-2\)

\(\Rightarrow2\left(n+3\right)⋮2n-2\)

\(\Rightarrow2n+6⋮2n-2\)

\(\Rightarrow2n-2+8⋮2n-2\)

      \(2n-2⋮2n-2\)

\(\Rightarrow8⋮2n-2\)

\(\Rightarrow2n-2\inƯ\left(8\right)\)

\(\Rightarrow2n-2\in\left\{1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{3;4;6;10\right\}\)

\(\Rightarrow n\in\left\{1,5;2;3;5\right\}\) ; mà n thuộc N

\(\Rightarrow n\in\left\{2;3;5\right\}\)

6 tháng 3 2018

giúp mình nha !