K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

a

B=x-4+9/x-4

B=X-4/X-4+9/X-4

B=1+9/x-4

để B thuộc z suy ra 9/x-4 thuộc z

suy ra x-4 thuộc vào Ư của 9

x-4=1 suy ra x=5 suy ra B=10

x-4=3 suy ra x=7 suy ra B=4

x-4=9 suy ra x= 13 suy ra B=2

x-4=-1 suy ra x= 3 suy ra B=-8

x-4=-3 suy ra x=1 suy ra B=-2

x-4=-9 suy ra x=-5 suy ra B=0

b

ta có :

B= 1+9/x-4

để B lớn nhất suy ra 9/x-4 lớn nhất suy ra x-4=1 suy ra x=5

suy ra Bmax=10 khi x=5

c tao có:

B=1+9/x-4

để B nhỏ nhất suy ra 9/x-4 nhỏ nhất suy ra x-4=-1 suy ra x=3

suy ra 9/x-4=-9

suy ra Bmin=-8 khi x=3

9 tháng 4 2021

ĐK: x > 0

B = \(\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

⇔ B = \(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

⇔ B = \(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\) = \(\dfrac{2}{x-1}\)

Để B ∈ Z thì x - 1 ∈ Ư(2) = {-2;-1;1;2}

⇔ \(\left\{{}\begin{matrix}x-1=-2\\x-1=-1\\x-1=1\\x-1=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=-3\\x=-2\\x=2\\x=3\end{matrix}\right.\)

Vậy....

20 tháng 2 2019

E = 5-x/x-2 nguyên khi

5 - x ⋮ x - 2

=> x - 2 + 7 ⋮ x - 2

=> 7 ⋮ x - 2

=> x - 2 thuộc Ư(7)

20 tháng 2 2019

Còn ý b bạn

18 tháng 12 2017

M=(7-x)/(x-2)

=>M=5/(x-2)-(x-2)/(x-2)

=>M=5/(x-2)-1

Để M có giá trị nhỏ nhất thì 5/(x-2)là Số nguyên âm nhỏ nhất=>5/(2-x) là số nguyên dương lớn nhất=> 2-x là số nguyên dương nhỏ nhất

=>2-x=1=>x=2-1=1

Vậy x=1 thì M có giá trị nhỏ nhất=-6.

18 tháng 12 2017

??? Mik thấy không tìm được M nhỏ nhất vì x càng lớn thỳ M càng nhỏ :

VD : Nếu x = 101 thì được M nhỏ hơn nếu x = 100

 \(\frac{7-x}{x-2}=\frac{7-100}{100-2}=-\frac{93}{98}\)

và      \(\frac{7-x}{x-2}=\frac{7-101}{101-2}=\frac{-94}{99}\)

Có : \(\frac{-94}{99}< \frac{-93}{98}\)

28 tháng 5 2021

\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

\(a)\)

\(\text{Để A có giá trị nguyên: }\)

\(\frac{9}{x-4}\in Z\)

\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)

\(b)\)

\(\text{Để A có giá trị lớn nhất: }\)

\(\frac{9}{x-4}\)\(\text{lớn nhất}\)

\(x-4=1\)

\(x=5\)

\(c)\)

\(\text{Để A đạt giá trị nhỏ nhất:}\)

\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)

\(x-4=-1\)

\(x=3\)

Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)

Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)

Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)

b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)

Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4=1\)

\(\Rightarrow x=5\)

\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)

\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)

c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)

Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4\in Z\)

\(\Rightarrow x-4=-1\)

\(\Rightarrow x=3\)

\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)

\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)