( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ( x + 4 ) + ( x + 5 ) = 65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\) ta được:
\(2a^2-b^2=ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\8a^3=-b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(vô-nghiệm\right)\\8\left(x+2\right)=-\left(x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{14}{9}\)
b.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\)
\(\Rightarrow a^2+4b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\a^3=64b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}65+x=65-x\\65+x=64\left(65-x\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b, ĐKXĐ: \(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}=3\)
\(\Leftrightarrow x=7\left(tm\right)\)
a, ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)
\(\Leftrightarrow2\sqrt{x-5}+6=0\)
\(\Leftrightarrow\sqrt{x-5}=-3\)
Phương trình vô nghiệm
(x+1) + ( x+2) + (x+3) + (x+4) + ( x+5)= 65
(x+x+x+x+x)+(1+2+3+4+5)=65
x*5+15=65
x*5=65-15
x*5=50
x=10
<=>(x+x+x+x+x)+(1+2+3+4+5)=65
=>5x+15=65
=>5x=65-15
=>5x=50
=>x=50:5
=>x=10
Bài 1:
\(A=\frac{1}{\left(1+2\right)}+\frac{1}{\left(1+2+3\right)}+\frac{1}{\left(1+2+3+4\right)}\)\(+\frac{1}{\left(1+2+3+4+5\right)}+...+\)\(\frac{1}{\left(1+2+3+...+10\right)}\)
\(A=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=\frac{9}{11}\)
Bài 2 :
2) Tử số = 11 x 13 x 15 + 3 x 3 x 3 x 11 x 13 x 15 + 5 x 5 x 5 x 11 x 13 x 15 + 9 x 9 x 9 x 11 x 13 x 15
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) x 11 x 13 x 15 = (1+27+125+ 729) x 11 x 13 x 15
Mẫu số = 11 x 13 x 17 + 3 x 3 x 3 x 13 x 15 x 19 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17 lớn hơn 11 x 13 x 15 + 3 x 3 x 3 x 13 x 15 x 17 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) 13 x 15 x 17 = (1+27+125+729) x 13 x 15 x 17
\(\Rightarrow A< \frac{\left(1+27+125+729\right)\times11\times13\times15}{\left(1+27+125+729\right)\times13\times15\times17}\)
\(=\frac{11}{17}\)
\(=\frac{1111}{1717}=B\)
Vậy \(A=B\)
\(6^2-\left(x+3\right)=45\)
\(36-\left(x+3\right)=45\)
\(x+3=35-45\)
\(x+3=-10\)
\(x=-13\)
1)\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{55}=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=2.\left(\frac{1}{2}-\frac{1}{11}\right)=\frac{9}{11}\)
2) Tử số = 11 x 13 x 15 + 3 x 3 x 3 x 11 x 13 x 15 + 5 x 5 x 5 x 11 x 13 x 15 + 9 x 9 x 9 x 11 x 13 x 15
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) x 11 x 13 x 15 = (1+27+125+ 729) x 11 x 13 x 15
Mẫu số = 11 x 13 x 17 + 3 x 3 x 3 x 13 x 15 x 19 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
lớn hơn 11 x 13 x 15 + 3 x 3 x 3 x 13 x 15 x 17 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) 13 x 15 x 17 = (1+27+125+729) x 13 x 15 x 17
=> \(A
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ( x + 4 ) + ( x + 5 ) = 65
( x + x + x + x + x ) + ( 1 + 2 + 3 + 4 = 5 ) = 65
x * 5 +15 = 65
x * 5 = 65 - 15
x * 5 = 50
x = 50 : 5
x = 10
( X + 1 ) + ( X + 2 ) + ( X + 3 ) + ( X + 4 ) + ( X + 5 ) = 65
X x 5 + ( 1 + 2 + 3 + 4 + 5 ) = 65
X x 5 + 15 = 65
X x 5 = 65 - 15
X x 5 = 50
X = 50 : 5
X = 10