K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để phương trình có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\)

\(\Rightarrow\left(m^2+1\right)\left(2m-1\right)< 0\)

\(\Leftrightarrow2m-1< 0\) \(\Leftrightarrow m< \dfrac{1}{2}\)

  Vậy ...

11 tháng 12 2019

Phương trình có hai nghiệm trái dấu khi và chỉ khi Giải sách bài tập Toán 10 | Giải sbt Toán 10 suy ra m < -2.

    Tổng của hai nghiệm bằng -3 khi Giải sách bài tập Toán 10 | Giải sbt Toán 10 thỏa mãn điều kiện m < -2.

    Đáp số: m = -5.

Để phương trình có 2 nghiệm trái dấu thì \(a\cdot c< 0\)

=>1(2m-1)<0

=>2m-1<0

=>2m<1

=>\(m< \dfrac{1}{2}\)

a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)

\(=4m^2-4m+1-4m+4=4m^2-8m+5\)

\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì m-1<0

hay m<1

Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)

\(\Leftrightarrow m^2+2m< 0\)

\(\Leftrightarrow m^2+2m+1< 1\)

\(\Leftrightarrow\left(m+1\right)^2< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)

Ta có: \(\Delta'=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét: \(x_1x_2=m^2+2m\)

Để phương trình có 2 nghiệm trái dấu 

\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)

Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)

24 tháng 6 2021

Pt có 2 nghiệm trái dấu

`<=>ac<0`

`<=>2m+1>0`

`<=>m> -1/2`

Để pt(1) có hai nghiệm trái dấu thì -(2m+1)<0

\(\Leftrightarrow2m+1>0\)

\(\Leftrightarrow2m>-1\)

hay \(m>-\dfrac{1}{2}\)

NV
29 tháng 1

Bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)

\(\Rightarrow-\dfrac{5}{2}< m< 1\)