K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB 

9 tháng 6 2021

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB 

Ta có:MN\(\perp\)CB

AB\(\perp\)CB

Do đó: MN//AB

Xét ΔCAB có MN//AB

nên \(\dfrac{MN}{AB}=\dfrac{CN}{CB}\)

=>\(\dfrac{1.5}{AB}=\dfrac{1.2}{6}=\dfrac{1}{5}\)

=>AB=1,5*5=7,5(m)