tìm số tự nhiên N, biết
a) N<1,75
b)0,9< N <2,01
c) N < 5/2
d)2,9 < N < 17/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5 chia hết cho n - 1 khi n - 1 là ước của 5
Ư(5) = {-5; -1; 1; 5}
⇒n - 1 ∈ {-5; -1; 1; 5}
Do n là số tự nhiên nên
n ∈ {0; 2; 6}
b) Do n là số tự nhiên nên 2n + 1 > 0
20 chia hết cho 2n + 1
⇒2n + 1 ∈ Ư(20) = {1; 2; 4; 5; 10; 20}
⇒2n ∈ {0; 3; 5; 6; 11; 21}
Lại do n là số tự nhiên
⇒n ∈ {0; 3}
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
a) Ta có: \(360⋮a\)
\(900⋮a\)
Do đó: \(a\inƯC\left(360;900\right)\)
mà a lớn nhất
nên \(a=ƯCLN\left(360;900\right)\)
hay a=180
b) Ta có: \(270⋮a\)
\(180⋮a\)
\(240⋮a\)
Do đó: \(a\inƯC\left(270;180;240\right)\)
\(\Leftrightarrow a\in\left\{1;2;3;5;6;10;15;30\right\}\)
mà 10<a<50
nên \(a\in\left\{15;30\right\}\)
\(3^{99}=\left(3^3\right)^{33}=27^{33}>27^{21}>11^{21}\\ 16^x< 128^4\\ \Rightarrow\left(2^4\right)^x< \left(2^7\right)^4\\ \Rightarrow2^{4x}< 2^{28}\Rightarrow4x< 28\Rightarrow x< 7\)
\(1,\\ 16^x< 128^4\Rightarrow\left(2^4\right)^x< \left(2^6\right)^4\Rightarrow2^{4x}< 2^{24}\\ \Rightarrow4x=24\Rightarrow x=6\\ 2,\\ 3^{99}=\left(3^3\right)^{33}=27^{33}>27^{21}>11^{21}\)
hok biết
1
2
2
3