B=\(\frac{9^5.27^3}{3^{18}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 314/273.42/65
sau đó bạn rút gon đi
314/273=314/39=35 và 42/65=1/486
ssau đó: nhân 2 số vs nhau=1/2 hehehehe
\(=\frac{3^7\cdot\left(2^4\right)^3}{\left(2^2\cdot3\right)^5\cdot\left(3^3\right)^2}\)
\(=\frac{3^7\cdot2^{12}}{2^{10}\cdot3^5\cdot3^6}\)
\(=\frac{3^7\cdot2^{12}}{2^{10}\cdot3^{11}}\)
\(=\frac{2^2}{3^4}\)
\(=\frac{4}{81}\)
\(\frac{3^7.16^3}{12^5.27^2}=\frac{3^7.\left(2^4\right)^3}{\left(2^2.3\right)^5.\left(3^3\right)^2}=\frac{3^7.2^{12}}{2^{10}.3^5.3^6}=\frac{3^7.2^{12}}{2^{10}.3^{11}}=\frac{2^2}{3^4}=\frac{4}{81}\)
a) \(\frac{9^{10}.27^7}{81^7.3^{15}}\)= \(\frac{\left(3^2\right)^{10}.\left(3^3\right)^7}{\left(3^4\right)^7.3^{15}}\)= \(\frac{3^{2.10}.3^{3.7}}{3^{4.7}.3^{15}}\)=\(\frac{3^{20}.3^{21}}{3^{28}.3^{15}}\)=\(\frac{3^{41}}{3^{43}}\)= \(\frac{3^{41}}{3^{41}.3^2}\)= \(\frac{1}{3^2}=\frac{1}{9}\)
b) \(\frac{8^3.9^5.27^5}{4^5.81^6}\)= \(\frac{\left(2^3\right)^3.\left(3^2\right)^5.\left(3^3\right)^5}{\left(2^2\right)^5.\left(3^4\right)^6}\)= \(\frac{2^{3.3}.3^{2.5}.3^{3.5}}{2^{2.5}.3^{4.6}}\)=\(\frac{2^9.3^{10}.3^{15}}{2^{10}.3^{24}}\)= \(\frac{2^9.3^{25}}{2^{10}.3^{24}}\)=\(\frac{2^9.3^{24}.3}{2^9.2.3^{24}}\)=\(\frac{3}{2}\)
a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)
$\frac{4}{3} = \frac{{4 \times 6}}{{3 \times 6}} = \frac{{24}}{{18}}$
Vậy quy đồng mẫu số hai phân số $\frac{4}{3}$ và $\frac{{12}}{{18}}$, ta được các phân số $\frac{{24}}{{18}}$ và $\frac{{12}}{{18}}$
Vậy câu đúng là a; câu sai là b , c
\(\frac{9^5.27^3}{3^{18}}=\frac{\left(3^2\right)^5.\left(3^3\right)^3}{3^{18}}=\frac{3^{10}.3^9}{3^{18}}=\frac{3^{19}}{3^{18}}=3^{19-18}=3^1=3\)
k mk nha !
\(\frac{9^5.27^3}{3^{18}}=\frac{\left(3^2\right)^5.\left(3^3\right)^3}{3^{18}}=\frac{3^{10}.3^9}{3^{18}}=3^{19-18}=3^1=3.\)