K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

\(\text{Có 3 trường hợp có thể xảy ra:}\)

\(A=B\)

\(A< B\)
\(A>B\)

14 tháng 8 2016

mik cần giải mà 

14 tháng 8 2016

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{59.60}\)

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}\)

\(B=\left(1+\frac{1}{3}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{59}+\frac{1}{60}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{30}\right)\)

\(B=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}=A\)

14 tháng 8 2016

A > B nhé tích mk vs

11 tháng 8 2016

B = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/59.60

B = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/59 - 1/60

B = (1 + 1/3 + 1/5 + ... + 1/59) - (1/2 + 1/4 + 1/6 + ... + 1/60)

B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - 2.(1/2 + 1/4 + 1/6 + ... + 1/60)

B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - (1 + 1/2 + 1/3 + ... + 1/30)

B = 1/31 + 1/32 + 1/33 + ... + 1/60 = A

=> B = A

11 tháng 8 2016

ta có: Lớn nhất của A là:\(\frac{1}{31}+\frac{1}{31}+...+\frac{1}{31}\)(30 phân số)

         =30/31

  B=1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)

Bé nhất của của B là :\(\left(1+1+...+1\right)-\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)

                                \(=30-\frac{30}{60}\)

=>B>A

14 tháng 8 2015

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{59.60}\)

=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}=\left(1+\frac{1}{3}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)

=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{59}+\frac{1}{60}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)

=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{60}\right)-\left(1+\frac{1}{2}+...+\frac{1}{30}\right)=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)

11 tháng 4 2017

Đặt: \(\left\{{}\begin{matrix}A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\\B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\end{matrix}\right.\)

Ta có:

\(B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{59.60}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{59}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{30}\right)\)

\(=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)

\(\Rightarrow B=A\)

Vậy \(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\) (Đpcm)

11 tháng 4 2017

Ta có:

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+......+\dfrac{1}{59.60}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{59}-\dfrac{1}{60}\)

= \(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{59}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)

- \(2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)

= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{60}\right)\) - \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)+ \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)

- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)

= \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)

Vậy\(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+....+\dfrac{1}{59.60}\)

26 tháng 5 2021

\(P=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)

\(\text{Ta có:}\)

\(91=13.7\)

\(\rightarrow4.13+5.17=42.35⋮91\)

\(\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)

\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.....60.42.35\)

\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32....60.20.91⋮91\)

22 tháng 4 2018

\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{59\cdot60}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{69}-\frac{1}{60}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

27 tháng 3 2018

\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)

\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\)   (Do 1 - 1/2017 < 1)