Giá trị của tổng \(x+y\) biết \(\frac{x-3}{y-5}\) và \(y-x=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y-x=4
=>y=x+4
thay vào ta có;
\(\frac{x-3}{y-5}=\frac{3}{5}\Leftrightarrow\frac{x-3}{x+4-5}=\frac{3}{5}\Leftrightarrow\frac{x-3}{x-1}=\frac{3}{5}\)
<=>(x-3).5=(x-1).3
<=>5x-15=3x-3<=>x=6
do đó y=x+4=6+4=10
Vậy x+y=6+10=16
câu 1 : 0 số cặp x y
câu 2 : ko có giá trị x thỏa mãn
câu 3 : GTLN A=2013
câu 4 : AB=2cm
câu 5: x+y=16
k cho mik nha bạn
Áp dụng tính chất của tỉ lệ thức và dãy tỉ số bằng nhau, ta có:
\(\frac{x-3}{y-5}=\frac{3}{5}\Rightarrow\frac{y-5}{x-3}=\frac{5}{3}\Rightarrow\frac{y-5}{5}=\frac{x-3}{3}=\frac{y-5-\left(x-3\right)}{5-3}=\frac{y-5-x+3}{2}=\frac{y-x-\left(5-3\right)}{2}=\frac{4-2}{2}=\frac{2}{2}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{y-5}{5}=1\\\frac{x-3}{3}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}y-5=5\\x-3=3\end{matrix}\right.\Rightarrow\left\{\begin{matrix}y=10\\x=6\end{matrix}\right.\)
\(\Rightarrow x+y=6+10=16\)
Vậy x+y=16.
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
Áp dụng ngược tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{y-5}\Rightarrow\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{y}{5}=\frac{x}{3}=\frac{y-x}{5-3}=\frac{4}{2}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{y}{5}=2\Rightarrow y=10\)
=> x + y = 10 + 6 = 16
thanks nhìu