K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2022

a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)

\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)

\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)

b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)

 \(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)

-Từ (1), (2) suy ra AM là đg trung trực của BC.

Đề bài yêu cầu gì?

30 tháng 3 2022

Cho tam giác ABC cân tại A. Có góc a bằng 100 độ, kẻ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. gọi M là giao điểm của Bx và Cy

7 tháng 6 2021

Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.

Không có mô tả.

7 tháng 6 2021

tiếp câu b. 

20 tháng 2 2019

a) Xét tam giác ABM và ACM, ta có:

       AB=AC (gt)

       AM:chung

Vậy tam giác ABM=ACM( cạnh huyền-cạnh góc vuông)

b)gọi giao điểm của AM,BC là D

Xét tam giác ADB và ADC, ta có

AB=AC(gt)

GÓC BAD=CAD(tam giác ABM=ACM)

AD: chung

Vậy tam giác ADB=ADC(c.g.c)

Góc ADB=ADC(2 góc tương ứng)

mà ADB+ADC=180( kề bù)

Vậy góc ADB=ADC=90

AM vuông góc với BC

29 tháng 11 2023

a) Để chứng minh tứ giác ABDC là hình chữ nhật, ta cần chứng minh AB || CD và AB = CD.

 

Vì Bx vuông góc với AB, nên AB || Bx.

Vì Cy vuông góc với AC, nên AC || Cy.

Do đó, AB || CD.

 

Ta có:

- Góc ABC = 90 độ (vì tam giác ABC vuông tại A).

- Góc BAC = 90 độ (vì Bx vuông góc với AB).

- Góc ACB = 90 độ (vì Cy vuông góc với AC).

 

Vậy tứ giác ABDC có 4 góc vuông, tức là là hình chữ nhật.

 

b) Gọi M là điểm đối xứng của B qua A và N là điểm đối xứng của C qua A. Ta cần chứng minh tứ giác BCMN là hình thoi và AD = MC.

 

Vì M là điểm đối xứng của B qua A, nên AM = MB và góc AMB = góc BMA = 90 độ.

Vì N là điểm đối xứng của C qua A, nên AN = NC và góc ANC = góc CNA = 90 độ.

 

Do đó, ta có:

- AM = MB = MC (vì M là trung điểm của BC).

- AN = NC = NB (vì N là trung điểm của BC).

- Góc BMC = góc BMA + góc AMC = 90 độ + 90 độ = 180 độ (tổng các góc trong tứ giác là 360 độ).

 

Vậy tứ giác BCMN là hình thoi và AD = MC.

 

c) Gọi E là trung điểm của AC và F là trung điểm của MN. Ta cần chứng minh EF || ND.

 

Vì E là trung điểm của AC, nên AE = EC.

Vì F là trung điểm của MN, nên AF = FN.

 

Do đó, ta có:

- AE = EC = AF = FN.

- Góc AEF = góc AFE = góc NDF = góc NFD = 90 độ (vì E và F lần lượt là trung điểm của AC và MN).

 

Vậy EF || ND.