K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Bài 1: 

\(\frac{\left(-3\right)^x}{81}=-27\Rightarrow\frac{\left(-3\right)^x}{3^4}=\left(-3\right)^3\Rightarrow\frac{\left(-3\right)^x}{3^4}=\frac{\left(-3\right)^7}{3^4}\Rightarrow x=7\)

 Bài 2: Tính\(\frac{1-3-5-7-...-49}{89}=\frac{1-\left(3+5+7+9+...+49\right)}{89}=\frac{1-\left(\left(49+3\right)\times\left(\frac{49-3}{2}+1\right)\div2\right)}{89}=\frac{1-\left(52\times24\div2\right)}{89}=\frac{1-624}{89}=\frac{-623}{89}=-7\)

k cho mình nha avt236085_60by60.jpgĐô Mỹ Diệu Linh

12 tháng 8 2016

1)

\(\frac{\left(-3\right)^x}{81}=-27\)

\(\left(-3\right)^x=-27.81=-2187\)

\(\left(-3\right)^x=\left(-3\right)^7\)

\(=>x=7\)

4 tháng 9 2020

Bài 1:

Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)

\(\Leftrightarrow2x=\frac{1440}{144}=10\)

\(\Rightarrow x=5\)

Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)

=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)

25 tháng 7 2019

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)

\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)

\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)

Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)

2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)

Áp dụng công thức trên ta được n=2016

3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)

\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)

Thay x=1/3 vào A ta được;

\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

Bài 4

ÁP DỤNG BĐT CAUCHY 

là ra

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

14 tháng 12 2016

Bài 1 

A= \(\frac{81^{10}.3^{17}}{27^{10}.9^{13}}\)

\(\frac{\left(3^4\right)^{10}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{13}}\)

\(\frac{3^{40}.3^{17}}{3^{30}.3^{26}}\)

\(\frac{3^{57}}{3^{56}}\)= 3

14 tháng 12 2016

\(\frac{x}{7}\)\(\frac{-12}{49}\)

=> 49x = (-12) x 7 

=> 49x = -84

=> x= \(\frac{-12}{7}\)

2 tháng 10 2020

b) \(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{2-\left(1+3+5+7+..+49\right)}{12}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\frac{2-\left(12.50+25\right)}{89}=-\frac{5.9.7.89}{5.4.7.7.89}=\frac{-9}{28}\)

8 tháng 11 2016

 Bài 4:

x O y z m n

Giải:
Vì Om là tia phân giác của góc xOz nên:

mOz = 1/2.xOz

Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy

Ta có: xOz + zOy = 180o ( kề bù )

=> 1/2(xOz + zOy) = 1/2 . 180o

=> 1/2.xOz + 1/2.zOy = 90o

=> mOz + zOn = 90o

=> mOn = 90o   (đpcm)

8 tháng 11 2016

Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55

Vậy 7^6 + 7^5 - 7^4 chia hết cho 55

A = 1 + 5 + 5^2 + ... + 5^50

=> 5A = 5 + 5^2 + 5^3 + ... + 5^51

=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )

=> 4A = 5^51 - 1

=> A = ( 5^51 - 1 )/4