tìm x,y thuộc z
2x-5y=-16 và 0<x,y<8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm xy biết xy+2x-5y=0( x, y thuộc Z)
\(\Rightarrow x(y+2)-5(y+2)=-10\)
\(\Rightarrow(x-5)(y+2)=-10\)
Vì \(x,y\in Z\Rightarrow x-5,y+2\in Z\)
Ta có bảng sau:
x-5 | 1 | -1 | -2 | -5 | 2 | 5 | 10 | -10 |
y+2 | -10 | 10 | 5 | 2 | -5 | -2 | -1 | 1 |
x | 6 | 4 | 3 | 0 | 7 | 10 | 15 | -5 |
y | -12 | 8 | 3 | 0 | -7 | -4 | -3 | -1 |
Chúc bạn học tốt!
khó quá
k nhé tớ k lại cho
hihihiihih ^_^ ~ hihihihihih
Vì \(\left(3x-2y\right)^{100}\ge0\forall x,y\inℤ\)
\(|5y-6z|\ge0\forall y,z\inℤ\Rightarrow|5y-6z|^{153}\ge0\forall y,z\inℤ\)
Nên \(\Rightarrow\hept{\begin{cases}(3x-2y)^{100}=0\\|5y-6z|^{153}=0\end{cases}}\Rightarrow\hept{\begin{cases}3x-2y=0\\5y-6z=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{6}=\frac{z}{5}\end{cases}}}\)
Từ \(\frac{x}{2}=\frac{y}{3};\frac{y}{6}=\frac{z}{5}\)suy ra\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
Ta có
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{2x}{8}=\frac{5y}{30}=\frac{3z}{15}=\frac{2x-5y+3z}{8-30+15}=\frac{56}{-7}=-8\)
Do đó
\(\frac{x}{4}=-8\Rightarrow x=-32\)
\(\frac{y}{6}=-8\Rightarrow y=-48\)
\(\frac{z}{5}=-8\Rightarrow z=-40\)
Vậy \(x=-32;y=-48;z=-40\)