K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

Cho B = 1/4 + 1/5 + 1/6 + ... + 1/19 . Hãy chứng tỏ rằng B > 1

Làm dùm mik bài này vs.

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

14 tháng 7 2018

\(A=\left(x-1\right)^2-3\)

Nhận xét :\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-3\ge-3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(minA=-3\Leftrightarrow x=1\)

Các câu còn lại làm tương tự nhé

16 tháng 6 2019

1/ \(x^2-2x+7\)

\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+7\)

\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\frac{1}{4}+7\)

\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+7\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\)

Có  \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)

\(\Rightarrow GTNNx^2-2x+7=\frac{27}{4}\)

               với  \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)

2/ \(4x^2+2x+9\)

\(=\left(2x\right)^2+2\cdot2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+9\)

\(=\left(2x+\frac{1}{2}\right)^2-\frac{1}{4}+9\)

\(=\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\)

có \(\left(2x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\)

\(\Rightarrow GTNN4x^2+2x+9=\frac{35}{4}\)

                với  \(\left(2x+\frac{1}{2}\right)^2=0;x=-\frac{1}{4}\)

7 tháng 6 2016

\(=x^4+2x^2+1-8=\left(x^2+1\right)^2-8.\)

Ta có :\(x^2+1\ge1\Rightarrow\left(x^2+1\right)^2\ge1^2=1\)

\(\Rightarrow\left(x^2+1\right)^2-8\ge1-8=-7\)

Vậy giá trị nhỏ nhất của biểu thức là - 7 khi x = 0