K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

Do |2x + 3| = x + 2

=> 2x + 3 = x + 2 hoặc 2x + 3 = -(x + 2)

=> 2x - x = 2 - 3 hoặc 2x + 3 = -x - 2

=> x = -1 hoặc 2x + x = - 2 - 3

=> x = -1 hoặc 3x = -5

=> x = -1 hoặc x = -5/3

10 tháng 11 2021

\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

2 tháng 7 2023

Đặt x+ 3x + 3 = a ;  x2 - x - 1 = b ; -2x2 - 2x - 1 = c ; -1 = d

Ta nhận thấy a3 + b3 + c3 + d3 = 0 (1) 

và a + b + c + d = 0

Khi đó ta có (1) <=>  (a + b)3 + (c + d)3 - 3ab(a + b) - 3cd(c + d) = 0

<=> ab(a + b) + cd(c + d) = 0

<=> (a + b)(ab - cd) = 0   

<=> \(\left[{}\begin{matrix}a=-b\\ab=cd\end{matrix}\right.\)

Với a = -b ta được x2 + 3x + 3 = -x2 + x + 1

<=> x2 + x + 1 = 0 

<=> \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)

=> Phương trình vô nghiệm

Với ab = cd 

\(\Leftrightarrow\left(x^2+3x+3\right).\left(x^2-x-1\right)=2x^2+2x+1\)

\(\Leftrightarrow\) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2+8x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x\right)^2-\left(2x+2\right)^2=0\)

\(\Leftrightarrow\left(x^2+3x+2\right).\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2.\left(x-2\right).\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)

30 tháng 6 2023

x = -1

16 tháng 10 2021

mình cần gấp

 

17 tháng 10 2021

a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)

\(\Leftrightarrow2x^2-2x-2x^2=-6\)

\(\Leftrightarrow x=3\)

b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

19 tháng 6 2021

a) đk: x khác 1; \(\dfrac{3}{2}\)

 \(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)

\(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)

\(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)

b) Có \(\left|3x-2\right|+1=5\)

<=> \(\left|3x-2\right|=4\)

<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)

TH1: Thay x = 2 vào P, ta có:

P = \(\dfrac{-1}{2.2-3}=-1\)

TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:

P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)

c) Để P > 0

<=> \(\dfrac{-1}{2x-3}>0\)

<=> 2x - 3 <0

<=> x < \(\dfrac{3}{2}\) ( x khác 1)

d) P = \(\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)

<=> 2x - 3 = x2 - 6

<=> x2 - 2x - 3 = 0

<=> (x-3)(x+1) = 0

<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$

$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$

$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$

$\Leftrightarrow 13x+15=2$

$\Leftrightarrow 13x=2-15=-13$

$\Leftrightarrow x=-13:13=-1$

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 2:

$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:

$(y+4)y=5$

$\Leftrightarrow y^2+4y-5=0$

$\Leftrightarrow (y-1)(y+5)=0$

$\Leftrightarrow y=1$ hoặc $y=-5$

Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$

Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$

3:

a: 3^x*3=243

=>3^x=81

=>x=4

b; 2^x*16^2=1024

=>2^x=4

=>x=2

c: 64*4^x=16^8

=>4^x=4^16/4^3=4^13

=>x=13

d: 2^x=16

=>2^x=2^4

=>x=4

12 tháng 12 2021

b: \(\Leftrightarrow4x+13=5\)

hay x=-2

12 tháng 12 2021

a) 2x(3x+1) – (2x+3)(3x-2) = 12

\(\Leftrightarrow6x^2+2x-\left(6x^2-4x+9x-6\right)=12\)

\(\Leftrightarrow6x^2+2x-6x^2+4x-9x+6=12\)

\(\Leftrightarrow-3x+6=12\) 

\(\Leftrightarrow-3x=6\)  

\(\Leftrightarrow x=-2\)  

vậy x = -2

 b)  (x+2)2 – (x-3)(x+3) = 5

\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-9\right)=5\)

\(\Leftrightarrow x^2+4x+4-x^2+9-5=0\)  

\(\Leftrightarrow4x+8=0\)

\(\Leftrightarrow4x=-8\) 

\(\Leftrightarrow x=-2\)

Vậy  x = -2