Cho \(\frac{a-b}{b-c}\)\(=\)\(\frac{c-d}{d-a}\)CMR : a = c hoặc a + c = b + d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}=1.\)
\(\Rightarrow\frac{a+b}{b+c}=1\Rightarrow a+b=b+c\Rightarrow a=c\)
Còn \(\frac{a+b+c+d}{a+b+c+d}=1\) nếu a+b+c+d=0 => vô định => xem lại y/c của đề bài
c1:
ta có nếu a+b+c+d #0 thì
a+b/b+c = c+d/d+a = a+b+c+d / a+b+c+d = 1 ((
vậy a+b = b+c <=> a=c
nếu a+b+c+d = 0 thì ta có
a+b= -(c+d)
b+c = -(d+a)
vậy nên luôn có a+b/c+d = c+d/d+a
c2
Ta có : a+b/b+c = c+d/d+a
=> (a+b)/(c+d)= (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a
- Nếu a+b+c+d = 0 (điều phải chứng minh)
c3
ta có
a+b/b+c=c+d/d+a
=> a+b+c+d/a+b+c+d=0
do mẫu số ko thể bằng 0(khi bằng 0 thì phân số không xác định)
vậy a+b+c+d=0
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
\(\Rightarrow ad+a^2+bd+ab=bc+bd+c^2+cd\)
\(\Rightarrow ad+a^2+bd+ab-bc-bd-c^2-cd=0\)
\(\Rightarrow ad+a^2+ab-bc-c^2-cd=0\)
\(\Rightarrow ad+a^2+ab+ac-bc-c^2-cd-ac=0\)( thêm bớt ac )
\(\Rightarrow a\left(a+b+c+d\right)-c\left(a+b+c+d\right)=0\)
\(\Rightarrow\left(a-c\right)\left(a+b+c+d\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}}\)( đpcm )
Ta có : a+b/b+c = c+d/d+a
=> (a+b)/(c+d)= (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a
- Nếu a+b+c+d = 0 (điều phải chứng minh)
A=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\right)\)\(\ge4\)
B=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{c}{b+c}+\frac{d}{c+b}+\frac{a}{d+a}+\frac{b}{a+b}\right)\)\(\ge4\)
A+B=2M+2\(\ge\)8 (M là biểu thức cần chứng minh)
M\(\ge\)2 <=>a=b=c=d
Ta có
\(\frac{a}{b+c}\ge\frac{a+a+d}{a+b+c+d}\)
\(\frac{b}{c+d}\ge\frac{b+b+a}{a+b+c+d}\)
\(\frac{c}{d+a}\ge\frac{c+c+b}{a+b+c+d}\)
\(\frac{d}{a+b}\ge\frac{d+d+c}{a+b+c+d}\)
=> \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)> \(\frac{a+a+d+b+b+a+c+c+b+d+d+c}{a+b+c+d}\)=\(\frac{2a+2b+2c+2d}{a+b+c+d}\)= 2
Chúc bạn học tốt!
a + b/b + c = c + d/d + a
=> ( a + b ) : ( c + d ) = ( b + c ) : ( d + a )
=> ( a + b ) : ( c + d ) + 1 = ( b + c ) : ( d + a ) + 1
hay ( a + b + c + d ) : ( c + d ) = ( b + c + a + d ) : ( d + a )
nếu a + b + c + d khác 0 thì c + d = d + a =>Nếu a + b + c + d = 0 ( điều phải chứng minh )
em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )
TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )
\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)
Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
thiếu đề
phải không
sửa lại mới làm được
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) ms đúng đề nhé!
Câu hỏi của Học Online 24h - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2+b^2}{ab}=\frac{c^2+d^2}{cd}\)
=> \(\frac{a^2}{ab}+\frac{b^2}{ab}=\frac{c^2}{cd}+\frac{d^2}{cd}\)
=> \(\frac{a}{b}+\frac{b}{a}=\frac{c}{d}+\frac{d}{c}\)
Mình chỉ làm được tới khúc này
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)
Từ (1) và (2) suy ra:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
Trường hợp 1: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)
Từ (3) và (4) suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Trường hợp 2: \(\frac{a+b}{c+d}=\frac{-\left(a-b\right)}{c-d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)
\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)
Từ (5) và (6) suy ra \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)
TH1 : \(a-b=c-d=0\)
\(\Rightarrow a=b;c=d\)
\(\Rightarrow a+c=b+d\)
TH2 :\(a-b\ne0;c-d\ne0\)
\(\frac{a-b}{b-c}=\frac{c-d}{d-a}\)
\(\Rightarrow\left(a-b\right)\left(d-a\right)=\left(b-c\right)\left(c-d\right)\)
\(\Rightarrow ad-a^2-bd+ab=bc-bd-c^2+cd\)
\(\Rightarrow ad-a^2+ab=bc-c^2+cd\)
\(\Rightarrow a\left(d-a+b\right)=c\left(b-c+d\right)\)
Với \(d-a+b=b-c+d=0\)
\(\Rightarrow d-a+b-\left(d+b\right)=\left(b-c+d\right)-\left(d+b\right)\)
\(\Rightarrow a=c\)
Với \(d-a+b\ne0;b-c+d\ne0\)
\(\Rightarrow a=c\)
Vậy ...