Tính hợp lý ( nếu có thể):
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{49}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\frac{15}{7}:\left(\frac{1}{15}-\frac{7}{5}\right)-\frac{15}{7}:\left(\frac{17}{15}+\frac{11}{5}\right)=\frac{15}{7}:\frac{-20}{15}-\frac{15}{7}:\frac{50}{15}\)
A = \(\frac{15}{7}.\frac{15}{-20}-\frac{15}{7}.\frac{15}{50}=\frac{15}{7}.\left(\frac{-15}{20}-\frac{15}{50}\right)=\frac{15}{7}.\frac{-105}{100}=-\frac{9}{4}\)
b) B = \(\frac{1}{\left(-\frac{2}{3}\right)^4}.\left(-4\right)^2-1^{2016}-10\frac{1}{3}=\frac{1}{\frac{16}{81}}.16-1-10\frac{1}{3}=\frac{81}{16}.16-1-10\frac{1}{3}\)
B = \(81-1-10-\frac{1}{3}=70-\frac{1}{3}=\frac{209}{3}\)
\(=\left(-\frac{1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{2}{7}+\frac{4}{35}\right)+\frac{1}{127}\)
\(=\left(-\frac{9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{10}{35}+\frac{4}{35}\right)+\frac{1}{127}\)
\(=\left(-\frac{18}{18}\right)+\frac{35}{35}+\frac{1}{127}\)
\(=-1+1+\frac{1}{127}\)
\(=\frac{1}{127}\)
a)\(\left(\frac{5}{2}-\frac{1}{3}\right).\frac{9}{2}-\frac{1}{6}=\frac{13}{6}.\frac{9}{2}-\frac{1}{6}=\frac{117}{12}-\frac{2}{12}=\frac{115}{12}\)
b)\(3\frac{1}{4}.\frac{5}{7}+\frac{2}{7}.3\frac{1}{4}-1\frac{1}{2}=3\frac{1}{4}.\left(\frac{5}{7}+\frac{2}{7}\right)-\frac{3}{2}=\frac{13}{4}-\frac{6}{4}=\frac{7}{4}\)
c)\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}=\frac{1}{2004}\)
a. \(\left(\frac{5}{2}-\frac{1}{3}\right).\frac{9}{2}-\frac{1}{6}=\frac{13}{6}.\frac{9}{2}-\frac{1}{6}=\frac{39}{4}-\frac{1}{6}=\frac{115}{12}\)
b. \(3\frac{1}{4}.\frac{5}{7}+\frac{2}{7}.3\frac{1}{4}-1\frac{1}{2}=3\frac{1}{4}.\left(\frac{5}{7}+\frac{2}{7}\right)-1\frac{1}{2}\)
= \(\frac{13}{4}.1-\frac{3}{2}=\frac{13}{4}-\frac{3}{2}=\frac{7}{4}\)
c. \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{2004}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2003}{2004}=\frac{1}{2004}\)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
\(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\left(\frac{-3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\left[\left(\frac{-3}{4}+\frac{-1}{4}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)\right]:\frac{3}{7}\)
\(=\left(-1+1\right):\frac{3}{7}\)
\(=0:\frac{3}{7}\)
\(=0\)
Học tốt