Rút gọn các biểu thức sau:
a) \(1+5+5^2+5^3+5^4+...+5^{50}\)
b) \(3^{99}-3^{98}-3^{97}-...-3-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
\(A=1-2+3-4+5-6+7-8+...+99-100\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(A=\left(-1\right).50\)
\(A=-50\)
\(B=1+3-5-7+9+11-...-397-399\)
\(B=1-2+2-2+2-...+2-2-399\)
\(B=1-399\)
\(B=-398\)
\(C=1-2-3+4+5-6-7+...+97-98-99+100\)
\(C=-1+1-1+1-...-1+1\)
\(C=0\)
\(D=2^{2024}-2^{2023}-...-1\)
\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)
\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)
\(D=2^{2024}-\left(2^{2024}-1\right)\)
\(D=2^{2024}-2^{2024}+1\)
\(D=1\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100
A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)
Xét dãy số 1; 3; 5;...;99
Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2
Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)
Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1
A = - 1\(\times\)50 = -50
b,
B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399
B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)
B = -8 + (-8) +...+ (-8)
Xét dãy số 1; 9; ...;393
Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8
Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)
Tổng B có 50 nhóm mỗi nhóm có giá trị là -8
B = -8 \(\times\) 50 = - 400
c,
C = 1 - 2 - 3 + 4 + 5 - 6 +...+ 97 - 98 - 99 +100
C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)
C = 0 + 0 + 0 +...+0
C = 0
d, D = 22024 - 22023- ... +2 - 1
2D = 22005- 22004 + 22003+...- 2
2D + D = 22005 - 1
3D = 22005 - 1
D = (22005 - 1): 3
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)
\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)
\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)
\(\Leftrightarrow B^3+9B-10=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)
\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))
c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)
\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(\Rightarrow C=1\)
d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)
\(=\sqrt[3]{3}+\sqrt[3]{2}\)
Vậy...
\(a,\left(x-5\right)\left(2x+1\right)-2x\left(x-3\right)\\ =x.2x-5.2x+x-5-2x.x-2x.\left(-3\right)\\ =2x^2-10x+x-5-2x^2+6x\\ =2x^2-2x^2-10x+x+6x-5\\ =-3x-5\)
\(b,\left(2+3x\right)\left(2-3x\right)+\left(3x+4\right)^2\\ =\left[2^2-\left(3x\right)^2\right]+\left[\left(3x\right)^2+2.3x.4+4^2\right]\\=4-9x^2+\left(9x^2+24x+16\right)\\ =24x+20\)
a) 5A = 5 + 5^2 + 5^3 + 5^4 +...+ 5^51
=> 5A - A = 4A = 5^51 - 1
=> A = \(\frac{5^{51}-1}{4}\)
b) 3B = 3^100 - 3^99 -...- 3
=> 3B - B = 2B = 3^100 - 2.3^99 + 1
=> B = \(\frac{3^{100}-2\times3^{99}+1}{2}\)
a, 1+5+52+.....+550
=> 5(1+5+52+.....+550)=5+52+53.....+551
=>4(1+5+52+.....+550)=551-1
=>1+5+52+.....+550=(551-1):4
b,399-398-...-3-1
=399-(398+...+3+1)
=399-(399-1):2