K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

xin lỗi nhiều tớ mới lên lớp 7 thôi chưa làm được toán lớp 8

a: Xét ΔHDC có 

N là trung điểm của HD

M là trung điểm của HC

Do đó: NM là đường trung bình của ΔHDC

Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)

mà AB//DC và \(AB=\dfrac{CD}{2}\)

nên NM//AB và NM=AB

b: Xét tứ giác ABMN có 

AB//NM

AB=NM

Do đó: ABMN là hình bình hành

9 tháng 8 2016

a) Ta có : M, N lần lượt là trung điểm của HC, HD => MN là đường trung bình của tam giác HDC => MN // CD và MN = 1/2 CD

MN = 1/2 CD => 2MN = CD, mà AB = CD (gt) => MN = AB (đpcm)

b) Hình trhang ABCD vuông tại A và D (gt) => AB // CD, mà MN // CD (cmt) nên AB // MN

Mà AB = MN (cmt) nên ABMN là hình bình hành (đpcm)

CHỌN giùm mình nha !!!!!!!!!!!!!!!!!!!!!

3 tháng 11 2018

không biết tự mà làm haaaaaaaaaaa!!!

17 tháng 7 2018

MÌnh gợi ý cho bạn thôi. Mong bạn hiểu.

a, MN là đường trung bình của tam giác HDC nên MN song song với CD và MN =1/2 CD

Mà AB song song với CD và AB= 1/2 CD

Suy ra: MN song song với AB và MN =AB

Vậy ABMN là hình bình hành (DHNB)

b, MN song song với DC(cmt) và DC vuông góc với AD nên MN vuông góc với AD

Tam giác ADM có 2 đường cao DH, MN cắt nhau tại N.

Do đó: N là trực tâm của tam giác ADM

VÌ thế: AN vuông góc với DM

Mà AN song song với BM (vì ABMN là hình bình hành)

Vậy BM vuông góc với DM.

Chúc bạn học tốt.

16 tháng 10 2023

Gọi K là trung điểm của HD

Xét ΔHDC có

K,M lần lượt là trung điểm của HD,HC

=>KM là đường trung bình của ΔHDC

=>KM//DC và \(KM=\dfrac{DC}{2}\)

mà \(AB=\dfrac{DC}{2}\)

nên KM=AB

KM//DC

DC//AB

Do đó: KM//AB

Xét tứ giác ABMK có

AB//MK

AB=MK

Do đó: ABMK là hình bình hành

=>AK//BM

Xét ΔADM có

MK,DH là đường cao

MK cắt DH tại K

Do đó: K là trực tâm

=>\(AK\perp DM\)

mà AK//BM

nên \(BM\perp DM\)

17 tháng 9 2020

a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành

b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)

Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)

Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)

c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)

16 tháng 9 2020

A B C D H N M

a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC 

=> MN là đtb của tg DHC (đn)

=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN

     MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB

=> ABMN là hình bình hành (dấu hiệu)

b, MN // DC (câu a) DC _|_ AD (gt)

=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM 

=> N là trực tâm của tg DAM

=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)

=> DM _|_ BM (TC)

=> ^BMD = 90

c, có CD thì tính đc AB xong tính bth