Tìm giá trị nhỏ nhất của x để C có giá trị nhỏ nhất:
C=Ix-3.2I+Ix-4I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B có giá trị nhỏ nhất khi :
/x+8/=0
=> x+8=0
x=0-8
x= -8
Vậy B có giá trị nhỏ nhất khi x= -8
A có giá trị lớn nhất khi :
/x+8/=0
=>x+8=0
x=0-8
x= -8
Vậy A có giá trị nhỏ nhất khi x= -8
( lưu ý : "/" là giá trị tuyệt đối )
|x-4| bao giờ cũng lớn hơn hoặc bằng 0. Để |x-4| + 2015 có giá trị nhỏ nhất suy ra |x-4|=0 hay x=4
Vậy tại x=4 biểu thức B có giá trị nhỏ nhất
Biểu thức A làm tương tự
dễ lắm
B = | x - 4 | + 2015 có giá trị nhỏ nhất
Ta có : | x - 4 | > 0 với mọi x E ( thuộc ) Z
nên | x - 4 | + 2015 > 2015 với mọi x E ( thuộc ) Z
Dấu " = " xảy ra <=> | x - 4 | = 0
<=> x - 4 =0
<=> x = 4
Vậy giá trị nhỏ nhất của B là 2015 <=> x = 4
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(C=\left|x-2013\right|+\left|x-2014\right|\)
\(=\left|x-2013\right|+\left|2014-x\right|\)
\(\ge\left|x-2013+2014-x\right|=1\)
Dấu "=" khi \(2013\le x\le2014\)
Vậy \(Min_C=1\) khi \(2013\le x\le2014\)
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
A = |x - 1| + |x + 5| + (x - 2)2 + 2017
A = |x - 1| + |x + 5| + |(x - 2)2| + 2017
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017
Áp dụng bđt |a| + |b| + |c| \(\ge\)|a+b+c| ta có:
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017 \(\ge\)|x - 1 + x + 5 + x2 + 4 - 4x| + 2017
A\(\ge\) |x2 - 2x + 8| + 2017
A \(\ge\) |x2 - x - x + 1 + 7| + 2017
A\(\ge\) |(x - 1)2 + 7| + 2017
A\(\ge\) (x - 1)2 + 2024
Dấu "=" xảy ra khi x - 1 \(\ge\)0; x + 5 \(\ge\)0
=> x \(\ge\)1; x \(\ge\)-5
=> x \(\ge\)1
Vậy GTNN của A là 2024 khi x = 1
Vì |x-2010| ≧ 0 với mọi x
|x-2012| ≧ 0 với mọi x
|x-2014| ≧ 0 với mọix
Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0
hay A ≧ 0
Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)
Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}
C=|x-3,2|+|x-4|
xài BĐt |a|+|b|>=|a+b| ta có:
|x-3,2|+|x-4| >= |x+3,2+4-x|=4/5
=>C >= 4/5
Dấu = khi ab >=0 =>(x-3,5)(x-4)>=0 =>....
Vậy ....
giúp thì giúp cho chót lun đê!
Please!!!!!!!!!!!!!!!!!!!!!!!