Tìm số nguyên dương n để biểu thức n-4 / 4(n-2) có giá trị là 1 số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
a, đk n khác 1
b, \(\Rightarrow n-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Ta có: \(A=-\dfrac{4}{n-1}\)
a) Để \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
b) Để \(A\in Z\) thì \(n-1\inƯ\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Ta có: \(A=\dfrac{3n-4}{3-n}=\dfrac{5-3\left(3-n\right)}{3-n}=\dfrac{5}{3-n}-3\) ( ĐK:\(n\ne3\))
Để \(A\inℤ\) mà \(-3\inℤ\) \(\Rightarrow\dfrac{5}{3-n}\inℤ\)\(\Leftrightarrow3-n\in\text{Ư}\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow n\in\left\{2;-2;4;8\right\}\).
Để A=3n+4n−1�=3�+4�−1 đạt giá trị nguyên
<=> 3n + 4 ⋮⋮ n - 1
=> ( 3n - 3 ) + 7 ⋮⋮ n - 1
=> 3 . ( n - 1 ) + 7 ⋮⋮ n - 1
⇒⎧⎨⎩3(n−1)⋮n−17⋮n−1⇒{3(�−1)⋮�−17⋮�−1
=> n - 1 ∈∈ Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Ta có bảng sau :
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Vậy x ∈∈ { - 6 ; 0 ; 2 ; 8 }
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
Ta có : \(A=3n^2-16n-12\)
\(=3n\left(n-6\right)+2\left(n-6\right)\)
\(=\left(n-6\right)\left(3n+2\right)\)
Vì n là số nguyên dương nên \(n-6< 3n+2\)
Vì A là số nguyên tố nên A chỉ có 2 ước nguyên dương là 1 và chính A
\(\Rightarrow n-6=1\)
\(\Rightarrow n=7\)
Thử lại : Thay n vào A ta được :
\(A=\left(7-6\right)\left(3.7+2\right)=23\)(là số nguyên tố)
Vậy n=6 thì A là số nguyên tố .
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Chúc em học tốt^^
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
Để \(A=\frac{3n+4}{n-1}\) đạt giá trị nguyên
<=> 3n + 4 \(⋮\) n - 1
=> ( 3n - 3 ) + 7 \(⋮\) n - 1
=> 3 . ( n - 1 ) + 7 \(⋮\) n - 1
\(\Rightarrow\begin{cases}3\left(n-1\right)⋮n-1\\7⋮n-1\end{cases}\)
=> n - 1 \(\in\) Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Ta có bảng sau :
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Vậy x \(\in\) { - 6 ; 0 ; 2 ; 8 }
\(A=\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)
Để A có giá trị nguyên <=> n-1 là ước của 7
=> \(n-1\in\left\{1;7;-1;-7\right\}\)
=> \(n\in\left\{2;8;0;-6\right\}\)
Chúc bạn làm bài tốt
Để biểu thức A đạt giá trị nguyên
<=> 3 chia hết cho (n-2)
Vì 3 chia hết cho n-2 => (n-2) thuộcƯ(3)={-3;-1;1;3}
Ta có bảng sau:
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy để biểu thức A đạt giá trị nguyên <=> n thuộc {-1;1;3;5}
Để A là số nguyên thì n-4 chia hết cho 4n-8
=>4n-16 chia hết cho 4n-8
=>4n-8-8 chia hết cho 4n-8
=>4n-8 thuộc Ư(-8)
=>4n-8 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n là số nguyên dương
nên n thuộc {3;1;4}