x^2-4x=3 ai bt k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghĩ đề đúng của câu a phải là \(8x^2\left(2x-3\right)-4x\left(4x^2-6x+1\right)+4\left(x-3\right)\)
nhân tung ra rồi rút gọn lại là xong kết quả của phép tính là \(-12\)không chứa ẩn x nên bt trên ko phụ thuộc vào biến
bài b tương tự
\(\frac{1}{2}x\left(10x^3-8x^2+4x-2\right)-5x\left(x^3-\frac{4}{5}x^2+\frac{2}{5}x-\frac{1}{5}\right)+7\)
\(=5x^4-4x^3+2x^2-x-5x^4+4x^3-2x^2+x+7\)
\(=7\)
Vậy bt trên ko phụ thuộc vào biến.
Làm hơi tắt tí thông cảm nha!
\(A=\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\left(x\ne0;x\ne\pm2\right)\)
\(A=\frac{2x^2+4x}{x\left(x^2-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}-\frac{2}{x-2}\)
\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x\left(x+2\right)+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x+8}{x\left(x-2\right)}\)
Vậy \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)
b) \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)
Ta có: x=4 (tmđk) thay vào A ta có:
\(A=\frac{-2\cdot4+8}{4\left(4-2\right)}=\frac{-8+8}{4\cdot2}=\frac{0}{8}=0\)
Vậy A=0 với x=4
Với mọi đa thức f(x),khi khai triển luôn có dạng : an.xn + an - 1.xn - 1 + an - 2.xn - 2 + ... + a2.x2 + a1.x + a0
\(\Rightarrow f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0\)là tổng các hệ số của f(x)
Đặt đa thức đã cho là f(x) thì tổng các hệ số của f(x) khi bỏ dấu ngoặc trong biểu thức (khai triển) là :
f(1) = (3 - 4 + 1)2006.(3 + 4 + 1)2007 = 02006.72007 = 0
ta có: f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)
\(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)
\(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)
\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)
Chúc bn học tốt !!!!!!
Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............
\(H=4x^2+4x+2=\left(2x+1\right)^2+1>0\)
\(K=4x^2+3x+2=4\left(x^2+2.\frac{3}{8}x+\frac{9}{64}\right)+\frac{23}{16}\)
\(=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}>0\)
\(L=2x^2+3x+4=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{23}{8}\)
\(=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}>0\)
a) P = 3 - 4x - x2
= -x2 - 4x + 3
= -(x2 + 4x + 4 - 4) + 3
= -(x + 2)2 + 7
Ta có: -(x + 2)2 ≤ 0 với ∀x
Nên: -(x + 2)2 + 7 ≤ 7 với ∀x
Dấu "=" xảy ra ⇔ -(x + 2)2 = 0
x + 2 = 0
x = -2
Vậy GTLN của biểu thức P là 7 khi x = -2
d) S = -x2 + 4x - 9
= -(x2 - 4x + 4 - 4) - 9
-(x - 2)2 - 5
Ta có: -(x - 2)2 ≤ 0 với ∀x
Nên: -(x - 2)2 - 5 ≤ -5 với ∀x
Dấu "=" xảy ra ⇔ -(x - 2)2 = 0
x - 2 = 0
x = 2
Vậy GTLN của biểu thức S là -5 khi x = 2
bạn chỉ cần tính như nhân đa thức với đa thức sau đó rút gọn,kết quả ra là số thì bn gọi là ko phù hợp vào biến
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(x^2-4x=3\)\(\Leftrightarrow x^2-4x-3=0\)(*)
Ta có \(\Delta'=\left(-2\right)^2-1.\left(-3\right)=7>0\)nên pt (*) có 2 nghiệm phân biệt
\(\orbr{\begin{cases}x_1=\frac{-\left(-2\right)+\sqrt{7}}{1}=2+\sqrt{7}\\x_2=\frac{-\left(-2\right)-\sqrt{7}}{1}=2-\sqrt{7}\end{cases}}\)