K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

a:b:c=3:4:5⇒a/3=b/4=c/5=k

⇒a=3k, b=4k, c=5k

2a2+2b2-3c2=-100

⇔2.(3k)2+2.(4k)2-3.(5k)2=-100

⇔2.9k2+2.16k2-3.25k2=-100

⇔18k2+32k2-75k2=-100

⇔ -25k2=-100

⇔k2=4

⇔k=+-2

k=-2⇔a/3=-2⇔a=-6

           b/4=-2⇔b=-8

           c/5=-2⇔c=-10

k=2⇔a/3=2⇔a=6

           b/4=2⇔b=8

           c/5=2⇔c=10

20 tháng 7 2021

Ta có: 

a:b:c=3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)=> a=3k; b=4k; c=5k

=>\(2a^2=\left(6k\right)^2\text{​​};2b^2=\left(8k\right)^2;3c^2=\left(15k\right)^2\)

mà theo bài ra ta có: 2a2+2b2-3c2=-100 

=> \(6k^2+8k^2-15k^2=-100\)

=> \(\left(6+8-15\right)k^2=-100\)

=>\(\left(-1\right)k^2=-100\)

=>\(k^2=\dfrac{-100}{-1}=100\)

=> k= 10 hoặc k=-10

TH1: a=3.10=30 

         b=4.10=40

         c=5.10=50

TH2: a=3.(-10)=-30 

         b=4.(-10)=-40

         c=5.(-10)=-50

NV
19 tháng 7 2021

Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)

\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)

\(=\left(a^2+b^2\right)\left(2-a\right)\)

Do \(a^2+b^2\ge0;\forall a;b\) nên:

\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)

\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)

\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)

\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)

21 tháng 4 2019

Ta có A 1 ^ + A 2 ^ = B 1 ^ + B 2 ^ = 180 ° ⇒ 2 A 1 ^ + 2 A 2 ^ = 2 B 1 ^ + 2 B 2 ^  (1)

Mặt khác: A 1 ^ − 2 A 2 ^ = B 1 ^ − 2 B 2 ^  (2)

Cộng từng vế các đẳng thức (1) và (2) được  3 A 1 ^ = 3 B 1 ^ ⇒ A 1 ^ = B 1 ^

=> a // b vì có cặp góc so le trong bằng nhau

25 tháng 9 2021

Kham khảo bài lm này nhé:

25 tháng 9 2021

\(2a^2+2b^2=5ab\\ \Leftrightarrow2a^2-5ab+2b^2=0\\ \Leftrightarrow2a^2-4ab-ab+2b^2=0\\ \Leftrightarrow2a\left(a-2b\right)+b\left(a-2b\right)=0\\ \Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-\dfrac{b}{2}\\a=2b\end{matrix}\right.\)

Với \(a=-\dfrac{b}{2}\Leftrightarrow Q=\dfrac{-\dfrac{b}{2}+b}{-\dfrac{b}{2}-b}=\dfrac{b}{2}:\dfrac{-3b}{2}=\dfrac{b}{-3b}=-\dfrac{1}{3}\)

Với \(a=2b\Leftrightarrow Q=\dfrac{3b}{b}=3\)

22 tháng 5 2022

P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2

P≤(a+2b)2+(b+2c)2+(c+2a)2

P≤(1+2)(a+b+c)=1+2

Dấu "=" xảy ra khi (a;b;c)=(0;0;1) và các hoán vị

26 tháng 11 2021

\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)

26 tháng 11 2021

D . \(2.\left(a^2-b^2\right)\)

20 tháng 6 2019

Vì x, y, z tỉ lệ với các số a, b, c nên  suy ra x = ka, y = kb, z = kc

Thay x = ka, y = kb, z = kc vào ( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 ) ta được

[ ( k a ) 2   +   2 ( k b ) 2   +   3 ( k c ) 2 ] ( a 2   +   2 b 2   +   3 c 2 )     =   ( k 2 a 2   +   2 k 2 b 2   +   3 k 2 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) 2     =   [ k ( a 2   +   2 b 2   +   3 c 2 ) ] 2       =   ( k a 2   +   2 k b 2   +   3 k c 2 ) 2       =   ( k a . a   +   2 k b . b   +   3 k c . c ) 2 =   ( x a   +   2 y b   +   3 z c ) 2  

do x = ka,y = kb, z = kc

Vậy

( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 )   =   ( a x   +   2 b y   +   3 c z ) 2

Đáp án cần chọn là: D