K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

   1 + 1 x 2 + 3 - 3 x 6 - 4 

= 1 +    2    + 3 -  18   - 4

=                -16

k nha

7 tháng 8 2016

\(1+1.2+3-3.6-4\)

\(=1+2+3-18-4\)

\(=6-18-4\)

\(=-12-4=-16\)

31 tháng 5 2017

3 . 6 = 3 . 4 + 2 . 3 rùi đấy bạn, bn xét từng tích rùi sẽ thấy thôi.

31 tháng 5 2017

Sorano Yuuki !!! Mình hiểu rồi . Thì ra người ta tách sai =.= Cảm ơn nhé .

Đáng nhẽ là . Ta thấy 1.4=1.(2+2)

2.5 = 2.(2 + 3)
3.6 = 3.(2 + 4)
4.7 = 4.(2 + 5)
……

n(n + 3) = n(n + 1) + 2

9 tháng 7 2017

\(P=\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+5-6+...+99-100}\)

đề là vậy nhé mn

9 tháng 7 2017

để ý chút thấy liền ah : 63.1,2-21.3,6=63.1,2-21.3.1,2= 63.1,2- 63.1,2=0

=============================

Ta có P = \(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+5-...+99-100}\)= \(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+5-...+99-100}\)= \(\dfrac{0}{1-2+3-4+5-6+...+99-100}=0\)

20 tháng 4 2018

3) x = 15,3 x 3,14                                          x = 7,5 x 0,24                                             x = 5/6 x 7/8                   x = 2/3 : 5/9

x = 48,042                                                 x =1,8                                                         x =35/48                         x =6/5

4) 3,6 : 0,01 < 3.6 x 100 S

3,6 : 0,01 = 3,6 x 100 D

3,6 : 0,01 > 3,6 x 100 S

1,2 : 0,25 > 1,2 x 4 S

1,2 : 0,25 = 1,2 x4 D

1,2 : 0,25 < 1,2 x 4 S

5) a) 2 và 3 /4 < 2 x 3/4 S

2 và 3/4 = 2 x 3/4 D

2 và 3/4 > 2x 3 /4 D

18 tháng 3 2018

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3.