K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Anh chỉ gợi ý về hướng giải thôi. Em vẽ hình rồi c/m nhé

1. Chứng minh bằng cách so sánh tổng hai đường chéo và hai cạnh đối trong hình bình NAMC với N là trung điểm AB

2. Có 2 góc so le trong đó tự giải nhé

a) * Vì ABCD là hình bình hành(gt)

=> \(\widehat{A}=\widehat{C}\)\(\widehat{B}=\widehat{D};AD=BC;AB//CD\)tính chất)

_ Ta có AM là tia phân giác của GÓC A => \(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}\left(1\right)\)

_Ta có CN là tia phân giác của GÓC C =>\(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\left(2\right)\)

_ Từ (1) (2) => \(\widehat{A_1}=\widehat{C_2}\)

* Xét \(\Delta ADM\) và \(\Delta CBN\)có:

\(\widehat{A_1}=\widehat{C_2}\)cmt)

AD=BC( cmt)

GÓC B=GÓC D

=> \(\Delta ADM=\Delta CBN\left(g.c.g\right)\)

=>AM=CN (3) ( 2 cạnh tuiwng ứng)

\(\widehat{M_1}=\widehat{N_1}\) ( 2 góc tương ứng)

* Mà AB//CD( gt) 

\(N\in AB;M\in CD\left(gt\right)\)

=>BN//CM => \(\widehat{N_1}=\widehat{C_1}\)2 góc SLT)

=> \(\widehat{M_1}=\widehat{C_1}\)

Mà 2 góc này ở vị trí Đồng vị

=> AM//CN(4)

* Từ (3)(4) 

=> AMCN là hình bình hành

_ Cậu tự vẽ hình xong đặt chỉ số ạ_

_tham khảo bài àm trên đây ạ, chúc cậu học tốt '.'

21 tháng 12 2023

a: Ta có: BC=DA(BADC là hình bình hành)

\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)

\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)

Do đó: MB=MC=NA=ND

Xét tứ giác ABMN có

BM//AN

BM=AN

Do đó: ABMN là hình bình hành

b: Hình bình hành ABMN có BA=BM(=BC/2)

nên ABMN là hình thoi

c: Ta có: MB//AD

=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)

mà \(\widehat{EAD}=60^0\)

nên \(\widehat{EBM}=60^0\)

Ta có: BA=BE

BA=BM(=BC/2)

Do đó: BE=BM

Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)

nên ΔBEM đều

=>\(\widehat{BEM}=60^0\)

Xét tứ giác ANME có NM//AE(ABMN là hình thoi)

nên ANME là hình thang

Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)

nên ANME là hình thang cân

=>AM=NE

a:

ABCD là hình thoi

=>AC vuông góc BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD

Xét tứ giác OCED có

F là trung điểm chung của OE và CD

Do đó: OCED là hình bình hành

mà góc DOC=90 độ(AC vuông góc BD tại O)

nên OCED là hình chữ nhật

=>DE//OC và DE=OC

=>DE//OA và DE=OA(Do OC=OA)

Xét tứ giác AOED có

AO//ED

AO=ED

Do đó: AOED là hình bình hành

b: Xét tứ giác BDSC có

F là trung điểm chung của DC và BS

Do đó: BDSC là hình bình hành

=>CS//BD

mà CE//BD

và CS cắt CE tại C

nên C,S,E thẳng hàng

c: Để BDSC là hình thoi thì BD=BC

BD=CS(BDSC là hình bình hành)

OD=CE(ODEC là hình chữ nhật)

=>BD=2CE

=>CS=2CE

=>E là trung điểm của CS

=>ES/BD=1/2

Xét ΔKBD và ΔKSE có

góc KBD=góc KSE
góc BKD=góc SKE

Do đó: ΔKBD đồng dạng với ΔKSE

=>KD/KE=BD/SE=2

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành

20 tháng 10 2020

Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th