Cho tam giác ABC nhọn nội tiếp đường tròn (o) có 3 đường cao AD;BE;CF cắt nhau tại H. BE cắt đường tròn (o) tại N,gọi M là điểm đối xứng của H qua D
Chứng minh:
a)Tứ giác DHEC;BCEF nội tiếp
b)Tam giác MCN cân
c)EH là phân giác góc DEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
xét tứ giác AEHF có :
AEH = 900 (BE là đường cao của B trên AC )
AFH = 900 (CF là dường cao của C trên AB )
ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau
==> tứ giác AEHF nội tiếp
xét tứ AEDB có :
AEB = 900 (BE là dường cao của B trên AC )
ADB = 900 (AD là đường cao của A trên BD )
mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông
==> tứ giác AEDB nội tiếp
câu b vì mình ko hiểu đường cao của đường tròn là gì :/
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
a: góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
góc BFC=góc BEC=90 dộ
=>BFEC nội tiếp
b: góc FEB=góc BAD
góc DEB=góc FCB
mà góc BAD=góc FCB
nên góc FEB=góc DEB
=>EB là phân giác của góc FED
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc OA
=>OA vuông góc IK
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
a: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
c: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc DEF