tìm số nguyên tố P,sao cho:
p+2;p+6;p+8;p+14 đều là số nguyên tố
làm ơn nói bạn nguyễn trần thành đạt giải rõ từng bước cho mình đi rồi mình tick cho nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì p là số nguyên tố => p thuộc { 2; 3; 5; 7; 11; ......}
+) Với p = 2 => p + 2 = 2 + 2 (hợp số) -> loại
+) Với p = 3 => p + 2 = 3 + 2 = 5 (số nguyên tố)
p + 8 = 3 + 8 = 11 (số ngto)
p + 16 = 3 + 16 = 19 (thỏa mãn)
Nếu p > 3 thì p có 2 dạng : p = 3k + 1; 3k + 2
+) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chiia hết cho 3 (hợp số)
+) p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 chia hết cho 3 (hợp số)
Vậy p = 3
1.a khác 0
=>a có 9 lựa chọn ;1,2,...9
=>b có 10 lựa chọn :0,1,...9
chọn một trong các trường hơp
ta có :a=1,b=0
1010 là hợp số
=> giả thiết trên sai (điều phải chứng minh)
2
theo đề bài suy ra p+40 là số nguyên tố
p+40=41
=>p=1
cho mình đúng đi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Với \(p=2\Rightarrow p+10=2+10=12\) ( không là số nguyên tố )
=> loại
Với \(p=3\Rightarrow p+10=3+10=13\)
\(\Rightarrow p+20=20+3=23\) ( đều là các số nguyên tố )
=> chọn
Nếu p chia cho 3 dư 1 \(\Rightarrow p=3k+1\left(k\in N\right)\)
\(\Rightarrow p+20=3k+1+20\)
\(=3k+21=3\left(k+7\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\) )
\(\Rightarrow3\left(k+7\right)\) là hợp số ; hay p + 20 là hợp số
=> loại
Nếu p chia cho 3 dư 2 \(\Rightarrow p=3k+2\left(k\in N\right)\)
\(\Rightarrow p+10=3k+2+10\)
\(=3k+12=3\left(k+4\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\) )
\(\Rightarrow3\left(k+4\right)\) là hợp số ; hay p + 10 là hợp số
=> loại
Vậy p = 3 thỏa mãn đề bài
Nhưng mà nãy h có thấy bn í giải đâu nà, z mk giải
Do p + 2; p + 6; p + 8; p + 14 đều là các số nguyên tố > 2 => các số này đều là số lẻ
=> p lẻ
+ Với p = 3 thì p + 6 = 3 + 6 = 9, là hợp số, loại
+ Với p = 5 thì p + 2 = 7; p + 6 = 11; p + 8 = 13; p + 14 = 19, đều là các số nguyên tố, chọn
+ Với p > 5, do p nguyên tố => p = 5k + 1; p = 5k + 2; p = 5k + 3 hoặc p = 5k + 4 (k thuộc N*)
Với p = 5k + 1 thì p + 14 = 5k + 15 chia hết cho 5, là hợp số, loại
Tương tự vs các trường hợp còn lại cx tìm đc 1 số ko thỏa mãn
Vậy p = 5