K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

(3x - 7)8 = (3x - 7)6

=> (3x - 7)8 - (3x - 7)6 = 0

=> (3x - 7)6.[(3x - 7)2 - 1) = 0

=> \(\orbr{\begin{cases}\left(3x-7\right)^6=0\\\left(3x-7\right)^2-1=0\end{cases}}\)=> \(\orbr{\begin{cases}3x-7=0\\\left(3x-7\right)^2=1\end{cases}}\)=> \(\orbr{\begin{cases}3x=7\\3x-7\in\left\{1;-1\right\}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{7}{3}\\3x\in\left\{8;6\right\}\end{cases}}\)=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x\in\left\{\frac{8}{3};2\right\}\end{cases}}\)

Vậy \(x\in\left\{\frac{7}{3};\frac{8}{3};2\right\}\)

4 tháng 8 2016

\(\left(3x-7\right)^8=\left(3x-7\right)^6\)

TH1\(\left(3x-7\right)^2=\left(3x-7\right)^6:\left(3x-7\right)^6\)

\(\left(3x-7\right)^2=1\)

\(\Rightarrow3x-7=1\)

\(3x=8\)

\(x=\frac{8}{3}\)

TH2 \(3x-7=0\)

       \(3x=7\)

       \(x=\frac{7}{3}\)

Vậy \(x=\frac{8}{3};x=\frac{7}{3}\)

29 tháng 10 2016

bó tay

29 tháng 10 2016

-100 taij x=0

31 tháng 8 2021

a. x = 9

b. x = 5

c. x = 8

Đề nhìn vô lí quá

31 tháng 8 2021

a. x = 9

b. x = 5

c. x = 8

1 tháng 9 2021

giúp mik mik đang cần gấp

nhưng phả có lời giải đừng cho mỗi đáp án

 

a:Ta có: \(\left(x-9\right)^7=\left(x-9\right)^4\)

\(\Leftrightarrow\left(x-9\right)^4\cdot\left[\left(x-9\right)^3-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-9=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=10\end{matrix}\right.\)

b: ta có: \(\left(3x-15\right)^{15}=\left(3x-15\right)^{10}\)

\(\Leftrightarrow\left(3x-15\right)^{10}\cdot\left[\left(3x-15\right)^5-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-15=0\\3x-15=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{16}{3}\end{matrix}\right.\)

20 tháng 4 2022

...

NV
23 tháng 4 2022

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

31 tháng 8 2021

a) \(\left(x-9\right)^4=\left(x-9\right)^7\)

\(\Rightarrow\left[{}\begin{matrix}x-9=1\\x-9=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=10\\x=9\end{matrix}\right.\)

b) \(\left(3x-15\right)^{10}=\left(3x-15\right)^{15}\)

\(\Rightarrow\left[{}\begin{matrix}3x-15=0\\3x-15=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{3}\\x=\dfrac{16}{3}\end{matrix}\right.\)

c) \(\left(x-8\right)^3=\left(x-8\right)^6\)

\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x-8=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=8\\x=9\end{matrix}\right.\)

23 tháng 10 2024

(7x-15):3=9

13 tháng 10 2023

a: \(y'< 0\)

=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)

=>\(\left(x-3\right)\left(-3x-6\right)< 0\)

=>\(\left(x+2\right)\left(x-3\right)>0\)

=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

y'>0

=>\(\left(x+2\right)\left(x-3\right)< 0\)

=>\(-2< x< 3\)

y'=0

=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Ta có bảng xét dấu sau:

x\(-\infty\)       -2                    1               3               +\(\infty\)
y'-              0        +          0      +       0              -

Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)

b: y'<0

=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)

=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)

y'>0

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)

Ta sẽ có bảng xét dấu sau đây:

x\(-\infty\)       -1        3/4        1       3          +\(\infty\)
y'+                   0   -     0     +   0   -   0             +

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)

31 tháng 8 2021

a, `(x-9)^4=(x-9)^7`

`(x-9)^4-(x-9)^7=0`

`(x-9)^4 . [(1-(x-9)^3]=0`

TH1: `(x-9)^4=0`

`x-9=0`

`x=9`

TH2: `1-(x-9)^3=0`

`(x-9)^3=1^3`

`x-9=1`

`x=10`

b, `(3x-15)^10=(3x-15)^15`

`(3x-15)^10 . [1-(3x-15)^5]=0`

TH1: `(3x-15)^10=0`

`3x-15=0`

`x=5`

TH2: `1-(3x-15)^5=0`

`(3x-15)^5=1^5`

`3x-15=1`

`x=16/3` (Loại)

c, `(x-8)^3=(x-8)^6`

`(x-8)^3 .[1-(x-8)^3]=0`

TH1: `(x-8)^3=0`

`x=8`

TH2: `1-(x-8)^3=0`

`x-8=1`

`x=9`

31 tháng 8 2021

\(a,\left(x-9\right)^4=\left(x-9\right)^7\)

\(\Rightarrow\left(x-9\right)=\left(x-9\right)^2\)

\(\Rightarrow\left(x-9\right)^3\)

\(\Rightarrow x=9\)

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)