K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

Sửa đề: Chứng minh MB\(\perp\)MC

Xét ΔABM vuông tại A và ΔDMC vuông tại D có

AB=DM

AM=DC

Do đó: ΔABM=ΔDMC

=>\(\widehat{AMB}=\widehat{DCM}\)

mà \(\widehat{DCM}+\widehat{DMC}=90^0\)

nên \(\widehat{AMB}+\widehat{DMC}=90^0\)

\(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)

=>\(\widehat{BMC}+90^0=180^0\)

=>\(\widehat{BMC}=90^0\)

=>MB\(\perp\)MC

16 tháng 1 2017
Ta có tam giac MBC vuong can tai M => goc M = 90 độ => goc M + gócc B + goc C = 180 độ =>^M +^B = 90 độ (C do goc M =90 độ) => 2 ^B=90 độ ( tam giac MBC can) => ^B=^C= 90 độ
17 tháng 1 2017

ban giai chi tiet hon dc ko

Xét ΔIAB và ΔICD có

góc IAB=góc ICD
goc AIB=góc CID

=>ΔIAB đồng dạng với ΔICD

=>IB/ID=AB/CD=BM/MC

=>IM//DC

=>IM vuông góc AD

23 tháng 1 2021

undefined

Hình ảnh minh họa , tại e k biết vẽ nhưng A và D = 90 độ và MC=CD , MB=AB . Hình dạng đúng rồi nhưng số đo góc và cạnh k đúng

23 tháng 1 2021

Hình vẽ:

Từ giả thiết ta có \(\dfrac{MC}{MB}=\dfrac{CD}{AB}\left(1\right)\)

Mặt khác \(\left\{{}\begin{matrix}BA\perp AD\\CD\perp AD\end{matrix}\right.\Rightarrow BA//CD\)

\(\Rightarrow\dfrac{CD}{AB}=\dfrac{NC}{NA}\left(2\right)\) (Định lí Talet)

\(\left(1\right);\left(2\right)\Rightarrow\dfrac{MC}{MB}=\dfrac{NC}{NA}\)

\(\Rightarrow MN//AB\)

Mà \(AB\perp AD\Rightarrow MN\perp AD\)