cho hình thang vuong abcd và ab//cd a và d =90 độ tìm m trên ad sao cho mb =mc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sửa đề: Chứng minh MB\(\perp\)MC
Xét ΔABM vuông tại A và ΔDMC vuông tại D có
AB=DM
AM=DC
Do đó: ΔABM=ΔDMC
=>\(\widehat{AMB}=\widehat{DCM}\)
mà \(\widehat{DCM}+\widehat{DMC}=90^0\)
nên \(\widehat{AMB}+\widehat{DMC}=90^0\)
\(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)
=>\(\widehat{BMC}+90^0=180^0\)
=>\(\widehat{BMC}=90^0\)
=>MB\(\perp\)MC


Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD

Hình ảnh minh họa , tại e k biết vẽ nhưng A và D = 90 độ và MC=CD , MB=AB . Hình dạng đúng rồi nhưng số đo góc và cạnh k đúng
Hình vẽ:
Từ giả thiết ta có \(\dfrac{MC}{MB}=\dfrac{CD}{AB}\left(1\right)\)
Mặt khác \(\left\{{}\begin{matrix}BA\perp AD\\CD\perp AD\end{matrix}\right.\Rightarrow BA//CD\)
\(\Rightarrow\dfrac{CD}{AB}=\dfrac{NC}{NA}\left(2\right)\) (Định lí Talet)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{MC}{MB}=\dfrac{NC}{NA}\)
\(\Rightarrow MN//AB\)
Mà \(AB\perp AD\Rightarrow MN\perp AD\)