K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

a, Xét tam giác ABC và tam giác HBA ta có : 

BAC = AHB = 900

B chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g )

25 tháng 3 2022

Mình cần phần b cơ ạ

 

DD
28 tháng 3 2021

a) Xét tam giác \(HBA\)và tam giác \(ABC\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{B}\)chung

Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).

b) Xét tam giác \(ABC\)vuông tại \(A\):

\(BC^2=AB^2+AC^2\)(Định lí Pythagore)

\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).

\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)

\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)

\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)

28 tháng 3 2021

(Bạn tự vẽ hình nhé).

a,Xét 2 tam giác vuông HBA và ABC có:

Góc H= góc A (=90 độ).

AB chung.

=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).

b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:

BC2=  AB2 + AC2

Hay BC2 = 62 + 82 

               = 36 + 64

               = 100

=> BC= 10 (cm).

Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)

=> BH/AB = AB/ BC = AH/AC

Hay BH/6 = 6/10 = AH/8

=> BH = 6.6/10 = 3,6 (cm).

      AH= 8.6/10 = 4,8 (cm).

Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.

8 tháng 5 2018

a)Xét \(\Delta ABC\)\(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{BHA}\)(=\(90^0\))

\(\widehat{B}\)chung

=>\(\Delta ABC\)~\(\Delta HBA\)(g.g)

=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=>\(AB^2=HB.BC\) A B C H D

22 tháng 3 2018

a) Ta có:   \(\widehat{HAB}+\widehat{HBA}=90^0\)

                 \(\widehat{HAB}+\widehat{HAC}=90^0\)

suy ra:   \(\widehat{HBA}=\widehat{HAC}\)

Xét 2 tam giác vuông:  \(\Delta HBA\) và  \(\Delta HAC\) có:

           \(\widehat{BHA}=\widehat{AHC}=90^0\)

          \(\widehat{HBA}=\widehat{HAC}\)   (CMT)

suy ra:   \(\Delta HBA~\Delta HAC\)

b)   \(BC=BH+HC=25+36=61\)cm

 \(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)

suy ra:    \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm

            \(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm

p/s: tham khảo

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: \(BC=HB+HC=61\left(cm\right)\)

\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)

\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)

20 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABD\)\(ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABD\sim ACE\left(g-g\right).\)

Chúc bạn học tốt!

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao