K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Để phân số trên là số nguyên thì a+1 phải chia hết cho 2

Xét a là số chẵn thì a+1 là số lẻ => ko chia hết cho 2

Xét a là số lẻ thì a+1 là số chẵn=> chia hết cho 2

Vay \(a\in\left\{1;3;5;7;9;......\right\}\)

15 tháng 5 2017

Thế còn trường hợp

a là số âm thì sao?

10 tháng 7 2017

a) Ta có : xy - x - y = 2

=> xy - x = 2 + y

=> x(y - 1) = y + 2

=> x = \(\frac{y+2}{y-1}\)

Mà x là số nguyên nên : \(\frac{y+2}{y-1}\)cũng là số nguyên 

Suy ra : y + 2 chia hết cho y - 1 

=> y - 1 + 3 chia hết cho y - 1 

=> 3 chia hết cho y - 1 

=> y - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

y - 1-3-113
y-2024
x = \(\frac{y+2}{y-1}\)0-242
13 tháng 7 2017

Để phân số A=\(\frac{4n+1}{n-1}\)thỏa mãn điều kiện thì:

4n+1 chia hết cho n-1

4n+1=4n-4+5

=4.(n-1)+5

Vì 4.(n-1) chia hết cho (n-1) nên 5 phải chia hết cho (n-1)

=> (n-1) thuộc Ư(5)=-1,1,-5,5

Nếu n-1=-1 =>n=0

        n-1=1 =>n=2

        n-1=-5 =>n=-4

        n-1=5 =>n=6

Vì n là số nguyên nên ta có n=0, n=2, n=6

Vậy n=0, n=2, n=6

15 tháng 4 2020

\(A=\frac{7a-2}{a-3}=\frac{7\left(a-3\right)+19}{a-3}=7+\frac{19}{a-3}\)

Để A nguyên thì \(\frac{19}{a-3}\) nguyên

Khi \(a-3\in\left\{1;19;-1;-19\right\}\)

\(\Leftrightarrow a\in\left\{4;22;2;-16\right\}\)

Vậy

30 tháng 6 2018

kể mẹ mày mày pải tự động não đi chứ

27 tháng 9 2018

-19/5 làm j có a mong bà viết cẩn thận hơn 

8 tháng 2 2018

tôi chịu

22 tháng 2 2021

1) số nguyên a phải có điều kiện gì để ta có phân số ?  

     a) \(\frac{32}{a-1}\)       
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .

Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.

 b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)

Điều kiện để 5(a+6) là phân số là:

\(_{a+6\ne0\Leftrightarrow a\ne-6}\)

Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.

 2) tìm các số nguyên x để các phân số sau là số nguyên : 

 a) \(\frac{13}{x-1}\)         

Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
     b) \(\frac{x+3}{x-2}\)
Ta có :

\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)\(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.