Tìm x y z biết x/5=y/10=z/15 và 3x-2y+z=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
=> \(\hept{\begin{cases}x=5k\\y=-4k\\z=6k\end{cases}}\) (1)
Khi đó, ta cóL
\(\left(5k\right).\left(-4k\right).\left(6k\right)=15\)
=> \(-120k^3=15\)
=> \(k^3=-\frac{1}{8}\)
=> \(k=-\frac{1}{2}\)
Thay k = -1/2 vào (1), ta được:
x = 5 . (-1/2) = -2,5
y = -4.(-1/2) = 2
z = 6 . (-1/2) = -3
Vậy ...
b)Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
\(\Rightarrow x=5k;y=-4k;z=6k\)
\(\Rightarrow xyz=5k.\left(-4k\right).6k=-120k^3\)
\(\Rightarrow15=-120k^3\)
\(\Rightarrow k^3=-\frac{1}{8}\Rightarrow k=-\frac{1}{2}\)
Từ \(\frac{x}{5}=-\frac{1}{2}\Rightarrow x=5\)
\(\frac{y}{-4}=-\frac{1}{2}\Rightarrow y=2\)
\(\frac{z}{6}=-\frac{1}{2}\Rightarrow z=-3\)
Vậy x = 5 ; y = -2 ; z = -3

x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30

1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20

Theo bài toán :
\(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{\frac{z}{2}}{10}=\frac{z}{20}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{x+2y-3z}{10+30-60}=\frac{20}{-20}=-1\)
\(\Rightarrow x=10.-1=-10\)
\(y=15.-1=15\)
\(z=20-1=-20\)
x/5 = y/10 = z/15 => 3x/15 = 2y/20 = z/15
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{3x}{15}=\frac{2y}{20}=\frac{z}{15}=\frac{3x-2y+z}{15-20+15}=\frac{2}{10}=\frac{1}{5}\)
\(\Rightarrow x=\frac{1}{5}\cdot5=1\)
\(y=\frac{1}{5}\cdot10=2\)
\(z=\frac{1}{5}\cdot15=3\)
Vậy x=1 ; y=2; z=3.