Cho tam giác ABC nhọn, đường cao AH, trung tuyến AD. Từ D kẻ DK vuông góc với AB (K thuộc AB) và DI vuông góc với AC (I thuộc AC). a) Chứng minh: BK.BA = BH.BD b) Chứng minh tam giác BKH đồng dạng với tam giác BDA. c) Giả sử BH = 2/3 AB và diện tích tam giác BKH là 64cm2. Tính diện tích tam giác BDA d) Chứng minh DK/DI = AC/AB (“/“ là phân số)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBKD vuông tại K và ΔBHA vuông tạiH có
góc KBD chung
=>ΔBKD đồng dạng với ΔBHA
=>BK/BH=BD/BA
=>BK*BA=BH*BD; BK/BD=BH/BA
b: Xét ΔBKH và ΔBDA có
BK/BD=BH/BA
góc KBH chung
=>ΔBKH đồng dạng với ΔBDA
c: ΔBKH đồng dạng với ΔBDA
=>\(\dfrac{S_{BKH}}{S_{BDA}}=\left(\dfrac{BH}{BA}\right)^2=\dfrac{4}{9}\)
=>\(S_{BDA}=64:\dfrac{4}{9}=144\left(cm^2\right)\)
a: Xet ΔAHD vuông tại H và ΔADC vuông tại D có
góc HAD chung
=>ΔAHD đồng dạng với ΔADC
=>AH/AD=AD/AC
=>AD^2=AH*AC
b,c: ΔABD vuông tại D có DI là đường cao
nên DI^2=IA*IB và AD^2=AI*AB
=>AH*AC=AI*AB
=>AH/AB=AI/AC
=>ΔAHI đồng dạng với ΔABC
=>góc AIH=góc ACB
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
nên \(\widehat{ABD}=\widehat{AMD}\)
c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có
AD chung
\(\widehat{IAD}=\widehat{KAD}\)
Do đó: ΔAID=ΔAKD
Suy ra: AI=AK
=>BI=KM