K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

A B C H M

a) Do AM là trung tuyến nên BM = MC

Ta có :  \(HC-HB-2HM\)

\(=HM+MC-HB-HM-HM\)

\(=MC-HB-HM\)

\(=MC-\left(HB+HM\right)\)

\(=MC-MB=0\)

\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)

b) Xét  \(\Delta AHM\)có  \(\tan a=\frac{HM}{AH}\)

Xét  \(\Delta AHC\)có  \(\cot C=\frac{HC}{AH}\)

Xét  \(\Delta AHB\)có  \(\cot B=\frac{HB}{AH}\)

Ta có :  \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)

Mà  \(HC-HB=2HM\)( câu a )

\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)

Vậy ...

17 tháng 7 2017

A B C H M

\(\Delta ABC\) vuông tại A  và AM là đường trung tuyến \(\Rightarrow AM=BM=CM\)

\(\Rightarrow\Delta AMB\) cân tại M \(\Rightarrow\widehat{MAB}=\widehat{B}\)

\(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{C}+\widehat{B}=90^0\left(1\right)\)

\(AH⊥BC\Rightarrow\widehat{B}+\widehat{BAH}=90^0\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{BAH}\). Ta có \(\widehat{BAH}+\widehat{HAM}=\widehat{MAB}\Rightarrow\widehat{HAM}=\widehat{MAB}-\widehat{BAH}\)\(\left(3\right)\)

Thay \(\widehat{B}=\widehat{MAB}\) và \(\widehat{C}=\widehat{BAH}\) vào (3), ta được:

\(\widehat{HAM}=\widehat{B}-\widehat{C}\). Vậy góc tạo bởi trung tuyến AM và đường cao AH \(\left(\widehat{HAM}\right)\) bằng \(\widehat{B}-\widehat{C}\)(đpcm)