K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(x^2\ge0;y^2\ge0\)

\(\Rightarrow x^2+y^2+2013\ge2013\)

\(MinA=2013\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

3 tháng 8 2016

GTNN của A là 2013

GTNN của B là -1

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

20 tháng 3 2022

a, Có \(\left(x^2-9\right)^2\)≥0   ∀ x ∈ Z

           |y-2| ≥0   ∀ y ∈ Z

⇒ Gía trị nhỏ nhất A=-1. Dấu ''='' xảy ra khi:\(\left(x^2-9\right)^2\)+|y-2|=0

                                                                 ⇒   \(x=3\) ;  \(y=2\)

Vậy.....

b, Có \(x^4\) ≥ 0 ∀ x ∈ Z

         3\(x^2\) ≥ 0 ∀ x ∈ Z

 ⇒ Giá trị nhỏ nhất của B=2. Dấu ''='' xảy ra khi: \(x^4\)+3\(x^2\)=0

                                                                         ⇒  \(x^2\left(x^2+3\right)\)=0

                                                                         ⇒  \(x^2\)             =0

                                                                         ⇒   \(x=0\)

Vậy...

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

2 tháng 7 2021

b, đk: \(x\ge1,y\ge2,z\ge3\)

\(=>B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{y-2}=b\\\sqrt{z-3}=c\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\\z=c^2+1\end{matrix}\right.\)\(=>a\ge0,b\ge0,c\ge0\)

B trở thành \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)

\(=\dfrac{a^{ }}{a^2+1}+\dfrac{a^2+1}{4}+\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4}+\dfrac{c}{c^2+1}+\dfrac{c^2+1}{4}\)

\(-\left(\dfrac{a^2+b^2+c^2+3}{4}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}-\dfrac{a^2+b^2+c^2}{4}\)\(=0\)

dấu"=" xảy ra<=>\(a=0,b=0,c=0< =>x=1,y=2,z=3\)

 

NV
2 tháng 7 2021

Chắc bạn ghi nhầm đề, tìm GTLN mới đúng, chứ GTNN của các biểu thức này đều hiển nhiên bằng 0

\(A=\dfrac{3.\sqrt{x-9}}{15x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)

\(A_{max}=\dfrac{1}{30}\) khi \(x=18\)

\(B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}=\dfrac{1.\sqrt{x-1}}{x}+\dfrac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}y}+\dfrac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}z}\)

\(B\le\dfrac{1+x-1}{2x}+\dfrac{2+y-2}{2\sqrt{2}y}+\dfrac{3+z-3}{2\sqrt{3}z}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;4;6\right)\)

a) Ta có: \(A=x^2-3x+5\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

b: Ta có: \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\ge5\forall x\)

Dấu '=' xảy ra khi x=0

11 tháng 1 2021

NV
22 tháng 4 2021

\(A=x^2+y^2+\left(\dfrac{1}{2}\right)^2-2xy+2.\dfrac{1}{2}x-2.\dfrac{1}{2}.y+\dfrac{3}{4}\)

\(A=\left(x-y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(A_{min}=\dfrac{3}{4}\) khi \(x-y+\dfrac{1}{2}=0\)

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:

$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$

$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)

Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$