K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

=35/6

6 tháng 10 2019

\(\frac{5}{6}\times\frac{7}{12}+\frac{5}{12}\times\frac{5}{6}+\frac{1}{6}=\frac{5}{6}\times\left(\frac{7}{12}+\frac{5}{12}\right)+\frac{1}{6}=\frac{5}{6}+\frac{1}{6}=1\)

6 tháng 10 2019

sao lúc nào lê duy mạnh cũng đòi k thế 

31 tháng 7 2023

A=1/5x6+1/6x7+..+1/17x18

  =1/5-1/6+1/6+1/7+...+1/17-1/18

  =1/5-1/18=13/90.

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(\Rightarrow5A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow5A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\right)\)

\(\Rightarrow5A=1-\frac{1}{8}\)

\(\Rightarrow A=\left(1-\frac{1}{8}\right).\frac{1}{5}=\frac{7}{40}\)

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{5}{7.8}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=5\left(1-\frac{1}{8}\right)\)

\(A=5.\frac{7}{8}\)

\(A=\frac{38}{8}\)

DD
21 tháng 7 2021

\(A=\frac{1}{2\times3}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{98\times99}\)

\(=\frac{1}{6}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}+...+\frac{1}{98\times99}\)

\(=\frac{1}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}\)

\(=\frac{1}{6}+\frac{1}{4}-\frac{1}{99}=\frac{161}{396}>\frac{160}{400}=\frac{2}{5}\)

6 tháng 5 2016

1+1=2   6+6=12   6x6=36   5:5=1   6x7=42    9:9=1   60-27=33     80-70=10      100-60=40

Chúc bạn học tốt nha

6 tháng 5 2016

1+1=2                                                                  6+6=12

6x6=36                                                                 5:5=1

6x7=42                                                                 9:9=1

60-27=33                                                              80-70=10

                                100-60=40

19 tháng 9 2023

\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)

\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)

\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)

\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)