(x-2015)^2014 + (x-2016)^2014 = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)-xyz}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\)\(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)
\(\Leftrightarrow\)\(\left(xyz+y^2z\right)+\left(xyz+x^2z\right)+\left(xz^2+yz^2\right)+\left(xy^2+x^2y\right)=0\)
\(\Leftrightarrow yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(yz+xz+xy+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y\\x+z=0\end{cases}}=0\) hoặc y+z=0
Do đó ta có B=0
\(\frac{2014.2015+2016}{2015.2016-2014}=\frac{2014.2015+2016}{2015.2014+4030-2014}=\frac{2014.2015+2016}{2014.2015+2016}=1\)
2014 x 2015 + 2016
=4058210+2016
=4060226
2016x2015-2014
=4062240-2014
=4060226
( 2013 x 2014 +2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 - 1/3 )
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x 0
= 0
Vì \(\left(x-2015\right)^{2014}\ge0;\left(x-2016\right)^{2014}\ge0\)
=> \(\left(x-2015\right)^{2014}+\left(x-2016\right)^{2014}\ge0\)
Mà x - 2015 > x - 2016 => \(\left(x-2015\right)^{2014}>\left(x-2016\right)^{2014}\)
=> (x - 2015)2014 = 1;(x - 2016)2014 = 0
=> x - 2016 = 0
=> x = 2016
Đặt \(x-2015=a;\text{ }2016-x=b\)
\(\Rightarrow a+b=1\text{ }\left(1\right)\)
Từ phương trình đã cho, ta được \(a^{2014}+b^{2014}=1\text{ }\left(2\right)\)
Nếu \(a< 0\), \(\left(1\right)\Rightarrow b=1-a>1\), \(\Rightarrow a^{2014}+b^{2014}>1\)(không thỏa (2))
Tương tự với b
Vậy \(a,b\ge0\)
\(\left(2\right)\Rightarrow a^{2014};\text{ }b^{2014}\le1\Rightarrow-1\le a,b\le1\)
\(\Rightarrow0\le a,b\le1\)
\(\left(1\right)+\left(2\right)\Rightarrow a+b=a^{2014}+b^{2014}\)
\(\Leftrightarrow a\left(1-a^{2013}\right)+b\left(1-b^{2013}\right)=0\text{ }\left(3\right)\)
Ta lại có: \(0\le a,b\le1\Rightarrow\hept{\begin{cases}1-a^{2013}\ge0\\1-b^{2013}\ge0\end{cases}}\)
\(\Rightarrow a\left(1-a^{2013}\right)+b\left(1-b^{2013}\right)\ge0\forall a,b\in\left[0;1\right]\)
Dấu bằng chỉ xảy ra khi \(a,b\in\left\{0;1\right\}\)
Do \(a+b=1\) nên \(\left(a;b\right)\in\left\{\left(0;1\right);\text{ }\left(1;0\right)\right\}\)
+TH1: \(\hept{\begin{cases}a=1\\b=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2015=1\\2016-x=0\end{cases}}\Leftrightarrow x=2016\)
+TH2 \(\hept{\begin{cases}a=0\\b=1\end{cases}\Leftrightarrow\hept{\begin{cases}x-2015=0\\2016-x=1\end{cases}}\Leftrightarrow}x=2015\)
Vậy \(x\in\left\{2015;\text{ }2016\right\}\)