K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

M=(x+3)(x+9)

Với mọi x là số tự nhiên là hợp lí

VD:0;1;2;..

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi

 

25 tháng 3 2022

\(a,M=3x-2=0\\ \Rightarrow3x=2\\ \Leftrightarrow x=\dfrac{3}{2}\)

\(b,A=\left(x^2-3x\right)-\left(3x-9\right)+5\\ =x^2-3x-3x+9+5\\ =x^2-6x+14\\ =\left(x^2-6x+9\right)+5\\ =\left(x-3\right)^2+5\ge5>0\forall x\)

Suy ra A luôn dương với mọi biến của `x`

23 tháng 11 2019

a. \(m^3\)\(+n^3+m\)\(mn\)\(\left(m+n\right)^3+m\)\(-3mn\left(m+n\right)\)\(mn\)

\(\left(m+n\right)^3+m\)\(mn\)\(\left(m+n\right)^3+m\)\(m\)

\(n\)\(m\)

Đặt \(n=mk\)

Do \(\left(m+n\right)^3+m\)\(m\)\(\left(m+n\right)^3+m=pmn=pkm^2\)

\(\left(m+n\right)^3=m\left(mnp-1\right)\)

Suy ra \(\left(mnp-1,m\right)=1\)\(m=t^3\)

13 tháng 6 2021

Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .

Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)

Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)

\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)

Vậy \(m=2.\)

15 tháng 12 2019

Chứng minh cái BĐT phụ này là xong: \(\frac{x}{3-x}\ge\frac{3}{4}x-\frac{1}{4}\) (0 < x < 3)

\(\Leftrightarrow\frac{3\left(x-1\right)^2}{4\left(3-x\right)}\ge0\) (luôn đúng với 0 < x < 3)

Làm nốt.

14 tháng 3 2019

31 tháng 12 2017