Tìm a, b để f(x) = 6x^4 - 7x^3+ax^2 +3x+2 chia hết cho y(x) = x^2 - x +b
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TD
0
NV
1
27 tháng 8 2016
1. f(x)=g(x) (6x2−x+a−6b−1) + (a−5b+2)x + (2+6b2+b−ab) ⇒ f(x)⋮g(x)⇔a−5b+2=2+6b2+b−ab=0 ⇒ (b,a)=(−1;−7) ; (−2;−12)
XL
0
PN
0
12 tháng 4 2022
-Áp dụng định lí Bezout:
\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)
\(\Rightarrow1+6+7-a+b=0\)
\(\Rightarrow a-b=14\left(1\right)\)
\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)
\(\Rightarrow16+48+28-2a+b=12\)
\(\Rightarrow2a-b=80\left(2\right)\)
-Từ (1) và (2) suy ra: \(a=66;b=52\)
Do \(f\left(x\right)\) có bậc 4 ,\(y\left(x\right)\) có bậc 2 nên đa thức thương\(Q\left(x\right)\) có bậc cao nhất là 2
Đặt \(Q\left(x\right)=6x^2+cx+d\)
có f(x)=\(6x^4-7x^3+ax^2+3x+2\)y(x).Q(x)=\(\left(x^2-x+b\right)\left(6x^2+cx+d\right)=6x^4+x^3\left(c-6\right)+x^2\left(a-c+6b\right)-x\left(a+bc\right)+bd\)
Đống nhất thức 2 vế ta được \(\hept{\begin{cases}6=6\\-7=c-6\\a=a-c+6b\end{cases},\hept{\begin{cases}3=-\left(a+bc\right)\\2=bd\end{cases}}}\)
giải hệ trên ta có\(\hept{\begin{cases}c=-1\\b=-\frac{1}{6}\\a=\frac{19}{6},d=-12\end{cases}}\)
Vậy a=19/6, b=-1/6
xem cái đoạn nhân có nhân sai không @@
ĐÂY LÀ PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH NHÉ .