2 phần x+1 - 1 phần x+2 = 3x - 11 phần (x+1).(x-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
heoheo lần sau bạn đánh = kí hiệu đi :(((
a/ \(\dfrac{x}{3}+\dfrac{2x-1}{6}=\dfrac{1}{2}\)
\(\Leftrightarrow2x+2x-1=3\)
<=> 4x = 4 <=> x = 1
Vậy x = 1
b/ \(\dfrac{3x+1}{2}+\dfrac{x-1}{3}=\dfrac{x-9}{6}\)
\(\Leftrightarrow3\left(3x+1\right)+2\left(x-1\right)=x-9\)
\(\Leftrightarrow9x+3+2x-2=x-9\)
\(\Leftrightarrow10x=-10\Leftrightarrow x=-1\)
Vậy pt có nghiệm x = -1
c/ \(\dfrac{x-1}{x-2}=\dfrac{x+3}{x+2}\) ĐKXĐ: \(x\ne\pm2\)
<=> \(\left(x-1\right)\left(x+2\right)=\left(x+3\right)\left(x-2\right)\)
\(\Leftrightarrow x^2+2x-x-2=x^2-2x+3x-6\)
\(\Leftrightarrow0x=-4\left(voly\right)\)
Vậy pt vô nghiệm
d/ \(\dfrac{3x-1}{3x+1}+\dfrac{x-3}{x+3}=2\) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-3\\x\ne-\dfrac{1}{3}\end{matrix}\right.\)
pt <=> \(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}+\dfrac{\left(x-3\right)\left(3x+1\right)}{\left(3x+1\right)\left(x+3\right)}=\dfrac{2\left(3x+1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}\)
=> (3x-1)(x+3) + (x-3)(3x+1) = 2(3x+1)(x+3)
\(\Leftrightarrow3x^2+8x-3+3x^2-8x-3=6x^2+20x+6\)
\(\Leftrightarrow-20x=12\Leftrightarrow x=-\dfrac{3}{5}\left(tm\right)\)
Vậy pt có nghiệm x=....
e/ như ý d
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
a) \(4x-3=11-3x\)
\(\Leftrightarrow4x+3x=11+3\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)
Vậy .............
b) \(x^3-4x^2+3x=0\)
\(\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x^2-x-3x+3\right)=0\)
\(\Leftrightarrow x\left[x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=3\end{matrix}\right.\)
Vậy .................
P/s: câu c bn gõ lại dc ko
c: \(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)
\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{x^2-10x+25}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)
e: \(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
\(=\dfrac{4x^2-3x+17+\left(2x-1\right)\left(x-1\right)-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-2x^2-9x+11+2x^2-3x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-12}{x^2+x+1}\)
\(M=\left(\dfrac{x-x^2}{\left(x-1\right)^2}+\dfrac{1}{1+x}-\dfrac{x}{x-1}\right)\cdot\left(\dfrac{3x-1}{x}+\dfrac{1}{x+1}-1\right)\)
\(=\left(\dfrac{-x}{x-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)\cdot\dfrac{\left(3x-1\right)\left(x+1\right)+x-x\left(x+1\right)}{x\left(x+1\right)}\)
\(=\dfrac{-2x\left(x+1\right)+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{3x^2+2x-1+x-x^2-x}{x\left(x+1\right)}\)
\(=\dfrac{-2x^2-2x+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x^2+2x-1}{x\left(x+1\right)}\)
\(=\dfrac{-2x^2-x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x^2+2x-1}{x\left(x+1\right)}\)
\(=\dfrac{\left(-2x^2-x-1\right)\left(2x^2+2x-1\right)}{x\left(x+1\right)^2\cdot\left(x-1\right)}\)
\(\left(\dfrac{3x-1}{x+1}-1\right)\)bạn sửa lại đề bào thế này
+) A = \(\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Ta có bảng :
x-1 | -1 | -3 | 1 | 3 |
x | 0 (loại) | -2 | 2 | 4 |
Vậy x = { -2,2,4 }
+) Bài B đề chưa rõ
+) C = \(\frac{11}{3x-1}\)
=> 3x-1 \(\in\) Ư(11) = { -1,-11,1,11 }
Ta có bảng :
3x-1 | -1 | -11 | 1 | 11 |
x | 0 (loại) | \(\frac{-10}{3}\) (loại) | \(\frac{2}{3}\) (loại) | 4 |
Vậy x = 4
+) M = \(\frac{x+2}{x-1}\)
Ta có: \(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=\frac{x-1}{x-1}+\frac{3}{x-1}=1+\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Tiếp theo như bài A mình đã làm
E = \(\frac{x+7}{x+2}=\frac{x+2+5}{x+2}=\frac{x+2}{x+2}+\frac{5}{x+2}=1+\frac{5}{x+2}\)
=> x+2 \(\in\) Ư(5) = {-1,-5,1,5 }
Ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
x | -3 | -7 | -1 | 3 |
Vậy x = { -7,-3,-1,3 }
ĐKXĐ: \(x\ne-1\) , \(x\ne2\), \(x\ne-2\)
\(\frac{2}{x+1}-\frac{1}{x+2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow2\left(x+2\right)\left(x-2\right)-\left(x+1\right)\left(x-2\right)-\left(3x-11\right)\left(x+2\right)=0\)
\(\Rightarrow2\left(x^2-4\right)-\left(x^2-x-2\right)-\left(3x^2-5x-22\right)=0\)
\(\Rightarrow2x^2-8-x^2+x+2-3x^2+5x+22=0\)
\(\Rightarrow-2x^2+6x+16=0\)
\(\Rightarrow-x^2+3x+8=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{41}}{2}\\x=\frac{3-\sqrt{41}}{2}\end{cases}}\)