K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

a) Tứ giác MNKC nội tiếp do bốn đỉnh đều thuộc đường tròn đường kính KC.

b) Ta có \(\Delta IMK\sim\Delta INC(g.g)\) nên \(IM.IC=IN.IK\).

c) D là trực tâm của tam giác ICK nên \(\widehat{IEK}=90^o\) , mà IK là đường kính của (O) nên E thuộc (O).

Các tứ giác NDEK, NDMI nội tiếp nên \(\widehat{MND}=\widehat{MID}=90^o-\widehat{ICK}=\widehat{DKE}=\widehat{DNE}\). Suy ra NC là phân giác của góc MNE.

d) Theo phương tích ta có \(DM.DK=DA.DB\). Áp dụng bđt AM - GM:

\(DM.DK=DA.DB\le\dfrac{\left(DA+DB\right)^2}{4}=\dfrac{AB^2}{4}\) không đổi.

Đẳng thức xảy ra khi và chỉ khi DA = DB, tức \(M\equiv I\).

Vậy...

30 tháng 5 2021

giups mk vs 

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)

1: góc CND=1/2*180=90 độ

Vì góc CNE+góc CKE=180 độ

nên CNEK nội tiếp 

2: Xét ΔMNE và ΔMBC có

góc MNE=góc MBC

góc M chung

=>ΔMNE đồng dạng với ΔMBC

=>MN/MB=ME/MC

=>MN*MC=MB*ME

23 tháng 5 2023

giúp em câu c được không ạ

a) Xét (O) có 

\(\widehat{DMC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{DMC}=90^0\)(Hệ quả góc nội tiếp)

\(\Leftrightarrow\widehat{EMC}=90^0\)

Xét tứ giác EMCH có 

\(\widehat{EMC}\) và \(\widehat{EHC}\) là hai góc đối

\(\widehat{EMC}+\widehat{EHC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: EMCH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a) Vì D là một điểm nằm trên cung AM nhỏ của (O) nên D∈(O)

Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính của (O)(gt)

Do đó: ΔADB vuông tại D(Định lí)

\(\widehat{ADB}=90^0\)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEC có 

\(\widehat{ADE}\) và \(\widehat{ACE}\) là hai góc đối

\(\widehat{ADE}+\widehat{ACE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a) Vì điểm D thuộc cung AM nhỏ nên D nằm trên đường tròn(O)

Xét (O) có

\(\widehat{ADB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)

\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))

Do đó: \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEC có

\(\widehat{ADE}\) và \(\widehat{ACE}\) là hai góc đối

\(\widehat{ADE}+\widehat{ACE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)