Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn tâm O bán kính R, 3 đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh các tứ giác AEHF, AEDB nội tiếp.
b) Vẽ đường kính AK của đường tròn tâm O.
Chứng minh AB . AC = 2R . AD
c) BE cắt (O) ở Q, CF cắt (O) tại P.
Chứng minh AP = AQ Và H đối xứng với P qua AB.
d) Chứng minh OC vuông góc với PE.
Các bạn giúp mình với, tối nay mình phải nộp cho thầy rồi
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b: góc ACK=góc ABK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK=AD*2R