Cho (O) đường kính AB, lấy C thuộc (O) sao cho AC<CB. Kẻ đường kính CD. Tiếp tuyến tại A và tiếp tuyến tại C của (O) cắt nhau tại E. Tiếp tuyến tại C và tiếp tuyến tại B của (O) cắt nhau tại F.
a)CMR: O, A, E, C thuộc một đường tròn
b)CMR: EO//CB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAB có
DC là đường cao
\(DC^2=AC\cdot CB\)
Do đó: ΔDAB vuông tại D
=>D nằm trên đường tròn đường kính AB
b: Xét ΔDAB vuông tại D có DC là đường cao
nên \(\left\{{}\begin{matrix}DA^2=AC\cdot AB\\DB^2=BC\cdot BA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=3\sqrt{13}\left(cm\right)\\DB=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
Vì DA<DB nên \(\stackrel\frown{DA}< \stackrel\frown{DB}\)
xet tg BCDE ta co;
góc acb = 90 ( goc noi tiep chan nua dg tron)
goc DEB =90(gt)
vay tg BCDE noi tiep( t/c cua tg noi tiep)
a: Ta có: \(\widehat{CHB}=90^0\)
=>ΔCHB vuông tại H
=>ΔCHB nội tiếp đường tròn đường kính CB(4)
Ta có: \(\widehat{CKB}=90^0\)
=>ΔCKB vuông tại K
=>ΔCKB nội tiếp đường tròn đường kính CB(5)
Từ (4) và (5) suy ra C,H,B,K cùng thuộc đường tròn đường kính CB
b:
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: \(\widehat{OCB}+\widehat{BCK}=\widehat{OCK}=90^0\)
\(\widehat{OCB}+\widehat{OCA}=\widehat{BCA}=90^0\)
Do đó: \(\widehat{BCK}=\widehat{OCA}\)(1)
Ta có: CHBK là tứ giác nội tiếp
=>\(\widehat{BCK}=\widehat{BHK}\left(2\right)\)
Xét ΔOAC có OC=OA
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\widehat{OCA}\)(3)
Từ (1),(2),(3) suy ra \(\widehat{BHK}=\widehat{OAC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//AC
Xét tứ giác CHBK có
\(\widehat{CHB}+\widehat{CKB}=90^0+90^0=180^0\)
=>CHBK là tứ giác nội tiếp
=>C,H,B,K cùng thuộc một đường tròn
a: góc OAE+góc OCE=180 độ
=>OAEC nội tiếp
b: Xét (O) có
EA,EC là tiếp tuyến
=>EA=EC
mà OA=OC
nên OE là trung trực của AC
=>OE vuông góc AC
góc ACB=1/2*sđ cung AB=90 độ
=>BC vuông góc AC
=>OE//BC