chứng minh các bất đẳng thức:
a/ 1/2^2+1/3^2+1/4^2+...+1/n^2<1 với mọi số tự nhiên n>=2
b/1/2^2+1/3^2+1/6^2+...+1/(2n)^2<1/2 với mọi n thuộc N, n>=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Thấy tử và mẫu của phân số đều lớn hơn 0 => \(\dfrac{a^2+a+1}{a^2-a+1}>0\)
b)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+\left(c^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng với mọi a,b,c)
Dấu = xra khi a=b=c=1
b)
\(a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) ( Luôn đúng)
Dấu "=" xảy ra khi a=b=c=1
2:
a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)
=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
A=2 thì a^2+2=1
=>a^2=-1(loại)
=>A>2 với mọi a
b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)
=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)
=>(căn a+căn b)(a-2*căn ab+b)>=0
=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)
1
ĐK: `x>1`
PT trở thành:
\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
Vậy PT vô nghiệm.
b
ĐK: \(x\ge2\)
Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))
=> \(x=t^2+2\)
PT trở thành: \(t^2+2-5t+2=0\)
\(\Leftrightarrow t^2-5t+4=0\)
nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)
\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)
2n + 1 > 2n + 3 (2)
+ Với n = 2 thì (2) ⇔ 8 > 7 (luôn đúng).
+ Giả sử (2) đúng khi n = k ≥ 2, nghĩa là 2k+1 > 2k + 3.
Ta chứng minh đúng với n= k+ 1 tức là chứng minh: 2k+2 > 2(k+ 1)+ 3
Thật vậy, ta có:
2k + 2 = 2.2k + 1
> 2.(2k + 3) = 4k + 6 = 2k + 2 + 2k + 4.
> 2k + 2 + 3 = 2.(k + 1) + 3 ( Vì 2k + 4 >3 với mọi k ≥ 2)
⇒ (2) đúng với n = k + 1.
Vậy 2n + 1 > 2n + 3 với mọi n ≥ 2.
a)
Ta có:
\({\cos ^4}\alpha {\sin ^4}\alpha = \left( {{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha - {\sin ^2}\alpha = {\cos ^2}\alpha - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha - 1 + {\cos ^2}\alpha = 2{\cos ^2}\alpha - 1\)
(đpcm)
b)
Ta có:
\(\frac{{{{\cos }^2}\alpha + {{\tan }^2}\alpha - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha - {{\sin }^2}\alpha - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)
(đpcm)
Ta có:
\(VT=\left[\dfrac{16a-a^2-\left(3+2a\right)\left(a+2\right)-\left(2-3a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right]:\dfrac{a-1}{a^3+4a^2+4a}\)
\(=\dfrac{16a-a^2-3a-6-2a^2-4a-2a+4+3a^2-6a}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}\)
\(=\dfrac{a-2}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}=\dfrac{a\left(a+2\right)}{a-1}\left(a\ne\pm2;a\ne1\right)\)
\(=a-\dfrac{a\left(a+2\right)}{a-1}=\dfrac{a^2-a-a^2-2a}{-1}=\dfrac{-3a}{a-1}=\dfrac{3a}{1-a}=VP\left(đpcm\right)\)