cho M=3^x+1=3^x+2+...+3^x+100
cm:M chia hết 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x(3+3^2+.........+3^{100}$
Vì $3 \to 3^{100}$ có 100 số nên ta ghép 4 số vào 1 cặp
$\to 3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x[(3+3^2+3^3+3^4)+......+3^{97}+3^{98}+3^{99}+3^{100}\\=3^x[120+...+3^{96}.120] \vdots 120(đpcm)$
Bài 1:
a: 76-6(x-1)=10
\(\Leftrightarrow x-1=11\)
hay x=12
c: \(5x+15⋮x+2\)
\(\Leftrightarrow x+2=5\)
hay x=3
Ta có:
\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)
\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)
\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)
\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)
\(=120\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)
Vậy \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\) (Đpcm)
=3^x.3 + 3^x.3^2 + 3^x.3^3 +...+ 3^x.3^100
=3^x . ( 3+3^2+3^3+3^4+...+3^100)
=3^x .( (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+ (3^97+3^98+3^99+3^100)
=3^x . ( 120 + 3^4 .(3+3^2+3^3+3^4) +...+ 3^96 (3+3^2+3^3+3^4)
=3^x . ( 120+ 3^4. 120+...+3^96.120)
=3^x . 120 . (1+3^4+...+3^96)
chia hết cho 120( đây là cách giải lớp 6)
=3^x(3+3^2+3^3+3^4)+(3^x+4)(3+3^2+3^3+3^4)+...
=3^x.120+(3^x+4).120+...
=120(3^x+3^x+4...) chia hết cho 120
=>x^3+1...(đề bài) chia hết cho 120
(Một số dấu ngoặc mk thêm để cho dễ nhìn nha)
Nhớ k cho mk đó!
Chứng minh rằng: \(3^{x+1}+3^{x+2}+3^{x+3}+....+3^{x+100}\)chia hết cho 120 ( với x là số tự nhiên )
Gọi tổng \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)là A, ta có :
\(A=3^x\times3+3^x\times3^2+3^x\times3^3+...+3^x\times3^{100}\)
\(=3^x\left[3^0\left(3+3^2+3^3+3^4\right)\right]+...+3^x\left[3^{96}\left(3+3^2+3^3+3^4\right)\right]\)
\(=3^x\left[3^0\left(3+9+27+81\right)\right]+...+3^x\left[3^{96}\left(3+9+27+81\right)\right]\)
\(=3^x\left(3^0\times120\right)+...+3^x\left(3^{96}\times120\right)\)
\(=3^x\times3^0\times120+...+3^x\times3^{96}\times120\)
\(=120\left[3^x\left(3^0+...+3^{96}\right)\right]⋮120\)
Vậy A chia hết cho 120