\(\frac{19}{13}\)+ \(\frac{45}{48}\):\(\frac{7}{16}\)-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
\(C=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{7}{52.65}+\frac{1}{13.70}\)
\(C=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{13}{52.65}+\frac{5}{67.70}\)
\(C=\frac{1}{15}-\frac{1}{31}+\frac{1}{31}-\frac{1}{45}+\frac{1}{45}-\frac{1}{52}+\frac{1}{52}-\frac{1}{65}+\frac{1}{65}-\frac{1}{70}\)
\(C=\frac{1}{15}-\frac{1}{70}\)
\(C=\frac{11}{210}\)
Vậy: \(C=\frac{11}{210}\)
1.\(\left(-\frac{6}{5}+\frac{6}{16}-\frac{6}{23}\right):\left(\frac{9}{5}-\frac{9}{16}+\frac{9}{23}\right)\)
\(=6\left(-\frac{1}{5}+\frac{1}{16}-\frac{1}{23}\right):\left(-9\right)\left(\frac{-1}{5}+\frac{1}{16}-\frac{1}{23}\right)\)
\(=6:\left(-9\right)=-\frac{2}{3}\)
2. \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{0.5-\frac{1}{3}+\frac{1}{4}}{-\frac{3}{2}+1-\frac{3}{4}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{-3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}-\frac{1}{3}\)
\(=\frac{9}{13}-\frac{5}{15}=\frac{4}{15}\)
\(\frac{19}{13}+\frac{45}{48}:\frac{7}{16}-2\)
\(=\frac{19}{13}+\frac{45}{48}.\frac{16}{7}-2\)
\(=\frac{19}{13}+\frac{15}{7}-2\)
\(=\frac{328}{91}-2\)
\(=\frac{146}{91}\)
=\(\frac{146}{91}\)